Natalia Requena Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/194037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Root cortex development is fineâ€ŧuned by the interplay of MIGs, SCL3 and DELLAs during arbuscular mycorrhizal symbiosis. New Phytologist, 2022, 233, 948-965.	7.3	8
2	Small-secreted proteins as virulence factors in nematode-trapping fungi. Trends in Microbiology, 2022, 30, 615-617.	7.7	13
3	Overexpression of the Potato Monosaccharide Transporter StSWEET7a Promotes Root Colonization by Symbiotic and Pathogenic Fungi by Increasing Root Sink Strength. Frontiers in Plant Science, 2022, 13, 837231.	3.6	7
4	Distinguishing friends from foes: Can smRNAs modulate plant interactions with beneficial and pathogenic organisms?. Current Opinion in Plant Biology, 2022, 69, 102259.	7.1	1
5	Host-Induced Gene Silencing of Arbuscular Mycorrhizal Fungal Genes via Agrobacterium rhizogenes-Mediated Root Transformation in Medicago truncatula. Methods in Molecular Biology, 2020, 2146, 239-248.	0.9	6
6	Detection of Arbuscular Mycorrhizal Fungal Gene Expression by In Situ Hybridization. Methods in Molecular Biology, 2020, 2146, 185-196.	0.9	0
7	Crossâ€scale integration of mycorrhizal function. New Phytologist, 2018, 220, 941-946.	7.3	14
8	RiCRN1, a Crinkler Effector From the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis, Functions in Arbuscule Development. Frontiers in Microbiology, 2018, 9, 2068.	3.5	74
9	Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family. Frontiers in Plant Science, 2016, 7, 487.	3.6	140
10	Alternative splicing – an elegant way to diversify the function of repeat ontaining effector proteins?. New Phytologist, 2016, 212, 306-309.	7.3	3
11	Symbiotic Fungi Control Plant Root Cortex Development through the Novel GRAS Transcription Factor MIG1. Current Biology, 2016, 26, 2770-2778.	3.9	103
12	Reprogramming of plant cells by filamentous plant olonizing microbes. New Phytologist, 2014, 204, 803-814.	7.3	45
13	Breaking down walls to live in harmony. ELife, 2014, 3, e04603.	6.0	Ο
14	A tandem <scp>K</scp> unitz protease inhibitor (<scp>KPI</scp> 106)–serine carboxypeptidase (<scp>SCP</scp> 1) controls mycorrhiza establishment and arbuscule development in <i><scp>M</scp>edicago truncatula</i> . Plant Journal, 2013, 75, 711-725.	5.7	30
15	Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.	7.1	717
16	The transcriptome of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 2012, 193, 755-769.	7.3	305
17	A Versatile Monosaccharide Transporter That Operates in the Arbuscular Mycorrhizal Fungus <i>Glomus</i> sp Is Crucial for the Symbiotic Relationship with Plants Â. Plant Cell, 2011, 23, 3812-3823.	6.6	365
18	Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2011, 14, 451-457.	7.1	135

#	Article	IF	CITATIONS
19	A Secreted Fungal Effector of Glomus intraradices Promotes Symbiotic Biotrophy. Current Biology, 2011, 21, 1204-1209.	3.9	514
20	LjLHT1.2—a mycorrhiza-inducible plant amino acid transporter from Lotus japonicus. Biology and Fertility of Soils, 2011, 47, 925-936.	4.3	39
21	Erl1, a Novel Era-Like GTPase from <i>Magnaporthe oryzae</i> , Is Required for Full Root Virulence and Is Conserved in the Mutualistic Symbiont <i>Glomus intraradices</i> . Molecular Plant-Microbe Interactions, 2010, 23, 67-81.	2.6	29
22	Membrane steroidâ€binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in <i>Medicago truncatula</i> . New Phytologist, 2010, 185, 716-733.	7.3	115
23	Genetic evidence for a microtubule-destabilizing â€`effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution â€ïn Aspergillus nidulans. Molecular Microbiology, 2008, 42, 121-132.	2.5	66
24	Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . New Phytologist, 2008, 177, 537-548.	7.3	80
25	Enzymatic Evidence for the Key Role of Arginine in Nitrogen Translocation by Arbuscular Mycorrhizal Fungi. Plant Physiology, 2007, 144, 782-792.	4.8	125
26	Development of bioinformatic tools to support EST-sequencing, in silico- and microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry, 2007, 68, 19-32.	2.9	49
27	Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytologist, 2007, 174, 879-891.	7.3	94
28	Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry, 2007, 68, 33-40.	2.9	99
29	Measuring quality of service: phosphate â€~à la carte' by arbuscular mycorrhizal fungi. New Phytologist, 2005, 168, 268-271.	7.3	14
30	A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genetics and Biology, 2004, 41, 148-156.	2.1	60
31	Different nitrogen sources modulate activity but not expression of glutamine synthetase in arbuscular mycorrhizal fungi. Fungal Genetics and Biology, 2004, 41, 542-552.	2.1	65
32	Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fungal Genetics and Biology, 2004, 41, 794-804.	2.1	67
33	The Old Arbuscular Mycorrhizal Symbiosis in the Light of the Molecular Era. Progress in Botany Fortschritte Der Botanik, 2004, , 323-356.	0.3	7
34	The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Molecular Microbiology, 2003, 47, 1577-1588.	2.5	86
35	Symbiotic Status, Phosphate, and Sucrose Regulate the Expression of Two Plasma Membrane H+-ATPase Genes from the Mycorrhizal Fungus Glomus mosseae. Plant Physiology, 2003, 132, 1540-1549.	4.8	90

36 Title is missing!. Plant and Soil, 2002, 244, 129-139.

3.7 57

#	Article	IF	CITATIONS
37	Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGlN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. , 2002, , 129-139.		11
38	Management of Indigenous Plant-Microbe Symbioses Aids Restoration of Desertified Ecosystems. Applied and Environmental Microbiology, 2001, 67, 495-498.	3.1	431
39	A homologue of the cell cycle check point TOR2 fromSaccharomyces cerevisiae exists in the arbuscular mycorrrhizal fungusGlomus mosseae. Protoplasma, 2000, 212, 89-98.	2.1	35
40	Molecular analysis of the Arbuscular mycorrhiza symbiosis. Archives of Agronomy and Soil Science, 2000, 45, 271-286.	2.6	24
41	At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiology Ecology, 1999, 30, 87-97.	2.7	136
42	Molecular Characterization of GmFOX2, an Evolutionarily Highly Conserved Gene from the Mycorrhizal Fungus Glomus mosseae, Down-Regulated During Interaction with Rhizobacteria. Molecular Plant-Microbe Interactions, 1999, 12, 934-942.	2.6	65
43	At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiology Ecology, 1999, 30, 87-97.	2.7	1
44	Interactions between plantâ€growthâ€promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides , a model legume for revegetation in	7.3	234

mediterranean semiâ€arid ecosystems. New Phytologist, 1997, 136, 667-677.