
Paul Musonge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1940362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixing in a tank stirred by a Rushton turbine at a low clearance. Chemical Engineering and Processing: Process Intensification, 2008, 47, 842-851.	3.6	56
2	Effectiveness of biogenic wasteâ€derived heterogeneous catalysts and feedstock hybridization techniques in biodiesel production. Biofuels, Bioproducts and Biorefining, 2020, 14, 620-649.	3.7	51
3	An investigation of tertiary students' understanding of evaporation, condensation and vapour pressure. International Journal of Science Education, 2004, 26, 1597-1620.	1.9	42
4	The application of eggshells and sugarcane bagasse as potential biomaterials in the removal of heavy metals from aqueous solutions. South African Journal of Chemical Engineering, 2020, 34, 142-150.	2.4	28
5	Bio-sorption of a bi-solute system of copper and lead ions onto banana peels: characterization and optimization. Journal of Environmental Health Science & Engineering, 2021, 19, 613-624.	3.0	25
6	Optimisation of <i>Croton gratissimus</i> Oil Extraction by <i>n</i> -Hexane and Ethyl Acetate Using Response Surface Methodology. Journal of Oleo Science, 2018, 67, 369-377.	1.4	14
7	Evaluation of Lead (II) Removal from Wastewater Using Banana Peels: Optimization Study. Polish Journal of Environmental Studies, 2021, 30, 1487-1496.	1.2	14
8	Bio-sorption of copper and lead ions in single and binary systems onto banana peels. Cogent Engineering, 2021, 8, .	2.2	13
9	An effective green and renewable heterogeneous catalyst derived from the fusion of biâ€component biowaste materials for the optimized transesterification of linseed oil methylÂester. Biofuels, Bioproducts and Biorefining, 2021, 15, 1461-1472.	3.7	11
10	Application of the Response Surface Methodology in the Removal of Cu2+ and Pb2+ from Aqueous Solutions Using Orange Peels. Scientific African, 2021, 13, e00931.	1.5	10
11	Transesterification <i>via</i> Parametric Modelling and Optimization of Marula (<i>Sclerocarya birrea</i>) Seed Oil Methyl Ester Synthesis. Journal of Oleo Science, 2021, 70, 77-93.	1.4	7
12	The Dynamic Behaviour of a Binary Adsorbent in a Fixed Bed Column for the Removal of Pb2+ Ions from Contaminated Water Bodies. Sustainability, 2022, 14, 7662.	3.2	7
13	Drying and infusion during the traditional processing of kilishi. Journal of Food Engineering, 1994, 23, 159-168.	5.2	5
14	Modelling and optimisation of oxidative desulphurisation of tyre-derived oil via central composite design approach. Green Processing and Synthesis, 2019, 8, 451-463.	3.4	5
15	Evaluation of <scp><i>inâ€situ</i></scp> and <scp><i>exâ€situ</i></scp> hybridization in the optimized transesterification of waste and pure vegetable oils. Biofuels, Bioproducts and Biorefining, 2023, 17, 342-354.	3.7	4
16	Process optimization of bio-alkaline catalysed transesterification of flax seed oil methyl ester. Scientific African, 2022, 16, e01275.	1.5	3
17	Kinetic study of non-isothermal co-pyrolysis of tyre crumb with eucalyptus sawdust. International Journal of Environment and Waste Management, 2018, 21, 184.	0.3	1
18	Kinetic study of non-isothermal co-pyrolysis of tyre crumb with eucalyptus sawdust. International Journal of Environment and Waste Management, 2018, 21, 184.	0.3	0

#	Article	IF	CITATIONS
19	Non-Isothermal Model-Free and Model-Fitting Kinetics of Tyre Crumb Pyrolysis. Journal of Solid Waste Technology and Management, 2019, 45, 121-130.	0.2	0
20	BIOLOGICAL NUTRIENT REMOVAL EFFICIENCIES FOR HYDRAULICALLY OVERLOADED WASTEWATER WORKS. , 2019, , .		0