Victor Gaba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/194035/publications.pdf

Version: 2024-02-01

75 papers 3,206 citations

185998
28
h-index

55 g-index

75 all docs

75 docs citations

75 times ranked 2758 citing authors

#	Article	IF	CITATIONS
1	Analysis of the RNA-Dependent RNA Polymerase 1 (RDR1) Gene Family in Melon. Plants, 2022, 11, 1795.	1.6	3
2	Factors influencing reversion from virus infection in sweetpotato. Annals of Applied Biology, 2020, 176, 109-121.	1.3	9
3	Characterization of potato virus Y populations in potato in Israel. Archives of Virology, 2019, 164, 1691-1695.	0.9	14
4	Diagnosis of plant diseases using the Nanopore sequencing platform. Plant Pathology, 2019, 68, 229-238.	1.2	95
5	prediction and segregation analysis of putative virus defense genes based on SSR markers in sweet potato F1 progenies of cultivars 'New Kawogo' and 'Resisto'. African Journal of Biotechnology, 2019, 18, .	0.3	0
6	Differential expression of cucumber RNAâ€dependent RNA polymerase 1 genes during antiviral defence and resistance. Molecular Plant Pathology, 2018, 19, 300-312.	2.0	42
7	Digital Photography as a Tool of Research and Documentation in Plant Tissue Culture. Methods in Molecular Biology, 2018, 1815, 89-101.	0.4	1
8	Detection of Potato virus Y in industrial quantities of seed potatoes by TaqMan Real Time PCR. Phytoparasitica, 2017, 45, 591-598.	0.6	5
9	Stronger sink demand for metabolites supports dominance of the apical bud in etiolated growth. Journal of Experimental Botany, 2016, 67, 5495-5508.	2.4	13
10	Immunity to tomato yellow leaf curl virus in transgenic tomato is associated with accumulation of transgene small RNA. Archives of Virology, 2015, 160, 2727-2739.	0.9	26
11	Polar auxin transport is essential for gall formation by <i><scp>P</scp>antoea agglomerans</i> on gypsophila. Molecular Plant Pathology, 2013, 14, 185-190.	2.0	4
12	HandGun-Mediated Inoculation of Plants with Viral Pathogens for Mechanistic Studies. Methods in Molecular Biology, 2013, 940, 53-62.	0.4	4
13	Biolistic DNA Delivery to Leaf Tissue of Plants with the Non-vacuum Gene Gun (HandyGun). Methods in Molecular Biology, 2013, 940, 45-51.	0.4	5
14	Viruses of Potato. Advances in Virus Research, 2012, 84, 209-246.	0.9	22
15	Food-grade sugar can promote differentiation in melon (Cucumis melo L.) tissue culture. In Vitro Cellular and Developmental Biology - Plant, 2012, 48, 600-608.	0.9	2
16	Effect of a single amino acid substitution in the NLS domain of Tomato yellow leaf curl virus-Israel (TYLCV-IL) capsid protein (CP) on its activity and on the virus life cycle. Virus Research, 2011, 158, 8-11.	1.1	24
17	A High Level of Transgenic Viral Small RNA Is Associated with Broad Potyvirus Resistance in Cucurbits. Molecular Plant-Microbe Interactions, 2011, 24, 1220-1238.	1.4	56
18	Characterization of nuclear localization signals in the type III effectors HsvG and HsvB of the gall-forming bacterium Pantoea agglomerans. Microbiology (United Kingdom), 2011, 157, 1500-1508.	0.7	25

#	Article	IF	CITATIONS
19	Hairpin-based virus resistance depends on the sequence similarity between challenge virus and discrete, highly accumulating siRNA species. European Journal of Plant Pathology, 2010, 128, 153-164.	0.8	16
20	The type III effector PthG of Pantoea agglomerans pv. gypsophilae modifies host plant responses to auxin, cytokinin and light. European Journal of Plant Pathology, 2010, 128, 289-302.	0.8	5
21	HandyGun: An improved custom-designed, non-vacuum gene gun suitable for virus inoculation. Journal of Virological Methods, 2010, 165, 320-324.	1.0	20
22	Inoculation of plants with begomoviruses by particle bombardment without cloning: Using rolling circle amplification of total DNA from infected plants and whiteflies. Journal of Virological Methods, 2010, 168, 87-93.	1.0	20
23	Vegetative micro-cloning to sustain biodiversity of threatened Moringa species. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 65-71.	0.9	31
24	Adventitious shoot formation in decapitated dicotyledonous seedlings starts with regeneration of abnormal leaves from cells not located in a shoot apical meristem. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 758-768.	0.9	3
25	Improved shoot regeneration due to prolonged seed storage. Scientia Horticulturae, 2009, 119, 117-119.	1.7	4
26	The Uses Of Ultrasound In Plant Tissue Culture. , 2008, , 417-426.		3
27	The Conserved FRNK Box in HC-Pro, a Plant Viral Suppressor of Gene Silencing, Is Required for Small RNA Binding and Mediates Symptom Development. Journal of Virology, 2007, 81, 13135-13148.	1.5	189
28	Distribution and Replication of the Pathogenicity Plasmid pPATH in Diverse Populations of the Gall-Forming Bacterium <i>Pantoea agglomerans</i> . Applied and Environmental Microbiology, 2007, 73, 7552-7561.	1.4	30
29	Biolistic inoculation of plants with Tomato yellow leaf curl virus DNA. Journal of Virological Methods, 2007, 144, 143-148.	1.0	35
30	Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Reports, 2007, 26, 267-276.	2.8	32
31	Magic-Angle Spinning NMR Studies of Cell Wall Bound Aromaticâ 'Aliphatic Biopolyesters Associated with Strengthening of Intercellular Adhesion in Potato (Solanum tuberosumL.) Tuber Parenchyma. Biomacromolecules, 2006, 7, 937-944.	2.6	9
32	A simple plant regeneration-ability assay in a range of Lycopersicon species. Plant Cell, Tissue and Organ Culture, 2006, 84, 269-278.	1,2	12
33	Adventitious regeneration in vitro occurs across a wide spectrum of squash (Cucurbita pepo) genotypes. Plant Cell, Tissue and Organ Culture, 2006, 85, 285-295.	1.2	34
34	Inoculation of Plants Using Bombardment., 2006, Chapter 16, 16B.3.1-16B.3.14.		4
35	Transformation of Recalcitrant Melon (Cucumis meloL.) Cultivars is Facilitated by Wounding with Carborundum. Engineering in Life Sciences, 2005, 5, 169-177.	2.0	15
36	Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Transgenic Research, 2005, 14, 81-93.	1.3	47

#	Article	IF	CITATIONS
37	pthG from Pantoea agglomerans pv. gypsophilae encodes an avirulence effector that determines incompatibility in multiple beet species. Molecular Plant Pathology, 2004, 5, 105-113.	2.0	20
38	Photography as a tool of research and documentation in plant tissue culture. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 536-541.	0.9	1
39	Use of Tissue Culture and Biotechnology for the Genetic Improvement of Watermelon. Plant Cell, Tissue and Organ Culture, 2004, 77, 231-243.	1.2	30
40	Breakage of resistance to Cucumber mosaic virus by co-infection with Zucchini yellow mosaic virus: enhancement of CMV accumulation independent of symptom expression. Archives of Virology, 2004, 149, 379-396.	0.9	43
41	Cucurbit biotechnology-the importance of virus resistance. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 346-358.	0.9	83
42	Functional analysis of the Cucumber mosaic virus 2b protein: pathogenicity and nuclear localization. Journal of General Virology, 2004, 85, 3135-3147.	1.3	76
43	Regeneration In Vitro From the Hypocotyl of Cucumis Species Produces Almost Exclusively Diploid Shoots, and Does Not Require Light. Hortscience: A Publication of the American Society for Hortcultural Science, 2003, 38, 105-109.	0.5	22
44	Characterization of Synergy Between Cucumber mosaic virus and Potyviruses in Cucurbit Hosts. Phytopathology, 2002, 92, 51-58.	1.1	123
45	Identification of a novel plant virus promoter using a potyvirus infectious clone. Virus Genes, 2000, 20, 11-17.	0.7	14
46	Amplified Degradation of Photosystem II D1 and D2 Proteins under a Mixture of Photosynthetically Active Radiation and UVB Radiation: Dependence on Redox Status of Photosystem II. Photochemistry and Photobiology, 1999, 69, 553-559.	1.3	42
47	Amplified Degradation of Photosystem II D1 and D2 Proteins under a Mixture of Photosynthetically Active Radiation and UVB Radiation: Dependence on Redox Status of Photosystem II., 1999, 69, 553.		3
48	Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends in Plant Science, 1998, 3, 131-135.	4.3	914
49	Recombination of Engineered Defective RNA Species Produces Infective Potyvirus In Planta. Journal of Virology, 1998, 72, 5268-5270.	1.5	26
50	Simple hand-held devices for the efficient infection of plants with viral-encoding constructs by particle bombardment. Journal of Virological Methods, 1997, 64, 103-110.	1.0	74
51	Ultraviolet-B effects on Spirodela oligorrhiza: induction of different protection mechanisms. Plant Science, 1996, 115, 217-223.	1.7	40
52	Accelerated Degradation of the D2 Protein of Photosystem II Under Ultraviolet Radiation. Photochemistry and Photobiology, 1996, 63, 814-817.	1.3	49
53	Low threshold levels of ultraviolet-B in a background of photosynthetically active radiation trigger rapid degradation of the D2 protein of photosystem-II. Plant Journal, 1996, 9, 693-699.	2.8	107
54	Ancymidol Hastens in Vitro Bud Development in Melon. Hortscience: A Publication of the American Society for Hortcultural Science, 1996, 31, 1223-1224.	0.5	15

#	Article	IF	CITATIONS
55	Improvement of Aconitum napellus micropropagation by liquid culture on floating membrane rafts. Plant Cell Reports, 1995, 14, 345-8.	2.8	24
56	Simplified construction and performance of a device for particle bombardment. Plant Cell, Tissue and Organ Culture, 1994, 37, 179-184.	1.2	31
57	Factors affecting UV-induced resistance in grapefruit against the green mould decay caused by Penicillium digitatum. Plant Pathology, 1993, 42, 418-424.	1.2	99
58	PHOTOCONTROL OF HYPOCOTYL ELONGATION IN LIGHTâ€GROWN <i>Cucumis sativus</i> L. PHOTOSYNTHETIC REQUIREMENT FOR A FLUENCE RATE DEPENDENT PHYTOCHROME RESPONSE. Photochemistry and Photobiology, 1991, 53, 399-405.	1.3	4
59	Degradation of the 32 kDa Photosystem II Reaction Center Protein in UV, Visible and Far Red Light Occurs Through a Common 23.5 kDa Intermediate. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1989, 44, 450-452.	0.6	41
60	Automated Plant Tissue Culture for Mass Propagation. Nature Biotechnology, 1988, 6, 1035-1040.	9.4	82
61	Light-requiring acifluorfen action in the absence of bulk photosynthetic pigments. Pesticide Biochemistry and Physiology, 1988, 31, 1-12.	1.6	14
62	Acifluorfen Enhancement of Cryptochrome-Modulated Sporulation following an Inductive Light Pulse. Plant Physiology, 1987, 83, 225-227.	2.3	4
63	Degradation of the 32 kD Herbicide Binding Protein in Far Red Light. Plant Physiology, 1987, 84, 348-352.	2.3	40
64	PHOTORECEPTOR INTERACTION IN PLANT PHOTOMORPHOGENESIS: THE LIMITS OF EXPERIMENTAL TECHNIQUES AND THEIR INTERPRETATIONS. Photochemistry and Photobiology, 1987, 45, 151-156.	1.3	42
65	Photocontrol of hypocotyl elongation in light-grown Cucumis sativus L Planta, 1985, 164, 264-271.	1.6	22
66	Photocontrol of Hypocotyl Elongation in Light-Grown Cucumis sativus L Plant Physiology, 1985, 79, 1011-1014.	2.3	11
67	Photocontrol of Hypocotyl Elongation in De-Etiolated <i>Cucumis sativus</i> L Plant Physiology, 1984, 74, 897-900.	2.3	47
68	Photocontrol of hypocotyl elongation in light-grown Cucumis sativus L Planta, 1984, 162, 422-426.	1.6	33
69	PHOTOCONTROL OF HYPOCOTYL ELONGATION IN DE-ETIOLATED Cucumis sativus L. RAPID RESPONSES TO BLUE LIGHT. Photochemistry and Photobiology, 1983, 38, 469-472.	1.3	20
70	PHOTOCONTROL OF HYPOCOTYL ELONGATION IN DE-ETIOLATED Cucumis sativus L. A BLUE-LIGHT-INDUCED POST-ILLUMINATION BURST OF GROWTH. Photochemistry and Photobiology, 1983, 38, 473-476.	1.3	12
71	COMPUTER-CONTROLLED LIGHT MEASUREMENTS FOR PHOTOMORPHOGENESIS. Photochemistry and Photobiology, 1982, 36, 613-616.	1.3	8
72	The control of food mobilisation in seeds of Cucumis sativus L Planta, 1981, 152, 70-73.	1.6	15

VICTOR GABA

#	Article	IF	CITATIONS
73	Two separate photoreceptors control hypocotyl growth in green seedlings. Nature, 1979, 278, 51-54.	13.7	107
74	The Uses of Ultrasound in Plant Tissue Culture. , 0, , 417-426.		4
75	Development of PVY resistance in tomato by knockout of host eukaryotic initiation factors by CRISPR-Cas9. Phytoparasitica, 0, , $1\cdot$	0.6	5