Cheng-Hsin Lu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1940339/cheng-hsin-lu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13	319	8	14
papers	citations	h-index	g-index
14	455 ext. citations	13.9	3.69
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
13	Pyrolysis-free covalent organic framework-based materials for efficient oxygen electrocatalysis. Journal of Materials Chemistry A, 2021 , 9, 20985-21004	13	7
12	Doping and ion substitution in colloidal metal halide perovskite nanocrystals. <i>Chemical Society Reviews</i> , 2020 , 49, 4953-5007	58.5	109
11	Tailoring interfacial carrier dynamics via rationally designed uniform CsPbBrxI3N quantum dots for high-efficiency perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 26098-26108	13	8
10	Stable Infrared-Emitting Chemical Composition Gradient Quantum Dots for Down-Convertors and Photodetectors. <i>ACS Applied Nano Materials</i> , 2020 , 3, 11335-11343	5.6	0
9	Ultrahighly Photosensitive and Highly Stretchable Rippled Structure Photodetectors Based on Perovskite Nanocrystals and Graphene. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 1517-1526	4	3
8	Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. <i>ACS Nano</i> , 2019 , 13, 12540-12552	16.7	41
7	Random Lasers: Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network (Advanced Optical Materials 16/2018). <i>Advanced Optical Materials</i> , 2018 , 6, 1870063	8.1	
6	Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. <i>Advanced Optical Materials</i> , 2018 , 6, 1800382	8.1	25
5	Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. <i>Advanced Materials</i> , 2017 , 29, 1703549	24	64
4	Innenrtiktitelbild: Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Near-Infrared Absorption (Angew. Chem. 42/2017). <i>Angewandte Chemie</i> , 2017 , 129, 13331-13331	3.6	
3	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Near-Infrared Absorption. <i>Angewandte Chemie</i> , 2017 , 129, 13126-13131	3.6	8
2	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Near-Infrared Absorption. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12946-12951	16.4	26
1	Control of morphology, photoluminescence, and stability of colloidal methylammonium lead bromide nanocrystals by oleylamine capping molecules. <i>Journal of Colloid and Interface Science</i> , 2016 , 484, 17-23	9.3	28