Hsin-Fang Yang-Yen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1939694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PRAP1 is a novel lipid-binding protein that promotes lipid absorption by facilitating MTTP-mediated lipid transport. Journal of Biological Chemistry, 2021, 296, 100052.	3.4	15
2	Palmitoyl Acyltransferase Activity of ZDHHC13 Regulates Skin Barrier Development Partly by Controlling PADi3 and TGM1 Protein Stability. Journal of Investigative Dermatology, 2020, 140, 959-970.e3.	0.7	10
3	Identification of UAP1L1 as a critical factor for protein O-GlcNAcylation and cell proliferation in human hepatoma cells. Oncogene, 2019, 38, 317-331.	5.9	21
4	A unique exonuclease ExoG cleaves between RNA and DNA in mitochondrial DNA replication. Nucleic Acids Research, 2019, 47, 5405-5419.	14.5	17
5	CBAP modulates Akt-dependent TSC2 phosphorylation to promote Rheb-mTORC1 signaling and growth of T-cell acute lymphoblastic leukemia. Oncogene, 2019, 38, 1432-1447.	5.9	10
6	Abstract 3464: CBAP: A novel rheostat molecule for regulation of TSC GAP activity and mTORC1 signaling in cancer cells. , 2019, , .		0
7	Protein Palmitoylation by ZDHHC13 Protects Skin against Microbial-Driven Dermatitis. Journal of Investigative Dermatology, 2017, 137, 894-904.	0.7	10
8	SHANK3 Regulates Intestinal Barrier Function Through Modulating ZO-1 Expression Through the PKCε-dependent Pathway. Inflammatory Bowel Diseases, 2017, 23, 1730-1740.	1.9	26
9	Cbl-mediated K63-linked ubiquitination of JAK2 enhances JAK2 phosphorylation and signal transduction. Scientific Reports, 2017, 7, 4613.	3.3	11
10	Murine tribbles homolog 2 deficiency affects erythroid progenitor development and confers macrocytic anemia on mice. Scientific Reports, 2016, 6, 31444.	3.3	8
11	Identification of a novel apolipoprotein that facilitates MTP-mediated lipid transport. Atherosclerosis, 2016, 252, e198-e199.	0.8	1
12	Roe of CBAP in controlling proliferation and development of T-cell acute lymphoblastic leukemia. Experimental Hematology, 2015, 43, S58.	0.4	0
13	Characterization of Mcl-1 isoforms and their impacts on mammalian cell growth. Experimental Hematology, 2015, 43, S103.	0.4	1
14	CBAP promotes thymocyte negative selection by facilitating T-cell receptor proximal signaling. Cell Death and Disease, 2014, 5, e1518-e1518.	6.3	4
15	Up-Regulation of Rhoa/Rho Kinase Pathway by Translationally Controlled Tumor Protein in Vascular Smooth Muscle Cells. International Journal of Molecular Sciences, 2014, 15, 10365-10376.	4.1	6
16	TCTP Is Essential for β-Cell Proliferation and Mass Expansion During Development and β-Cell Adaptation in Response to Insulin Resistance. Endocrinology, 2014, 155, 392-404.	2.8	20
17	Osteoclastogenic activity of translationallyâ€controlled tumor protein (TCTP) with reciprocal repression of p21. FEBS Letters, 2014, 588, 4026-4031.	2.8	3
18	Thymic epithelial β atenin is required for adult thymic homeostasis and function. Immunology and Cell Biology, 2013, 91, 511-523.	2.3	18

#	Article	IF	CITATIONS
19	<scp>IL</scp> â€15 modulates the balance between <scp>B</scp> clâ€2 and <scp>B</scp> im via a <scp>J</scp> ak3/1â€ <scp>PI</scp> 3 <scp>K</scp> â€ <scp>A</scp> ktâ€ <scp>ERK</scp> pathway to promote <scp>CD</scp> 8î±Î± ⁺ intestinal intraepithelial lymphocyte survival. European Journal of Immunology, 2013, 43, 2305-2316.	2.9	26
20	Constitutive Phosphorylation of GATA-1 at Serine26 Attenuates the Colony-Forming Activity of Erythrocyte-Committed Progenitors. PLoS ONE, 2013, 8, e64269.	2.5	4
21	CBAP Functions as a Novel Component in Chemokine-Induced ZAP70-Mediated T-Cell Adhesion and Migration. PLoS ONE, 2013, 8, e61761.	2.5	7
22	Identification of a novel function of the clathrin-coated structure at the plasma membrane in facilitating GM-CSF receptor-mediated activation of JAK2. Cell Cycle, 2012, 11, 3611-3626.	2.6	12
23	Synergism between p53 and Mcl-1 in protecting from hepatic injury, fibrosis and cancer. Journal of Hepatology, 2011, 54, 685-694.	3.7	24
24	Does N-terminal Processing of Mcl-1 Occur at Mitochondrial Outer Membrane or Matrix?. Journal of Biological Chemistry, 2011, 286, le15.	3.4	2
25	Abstract B17: Synergism between p53 and Mcl-1 in hepatocyte maturation and survival. , 2011, , .		0
26	The fastâ€mobility isoform of mouse Mclâ€1 is a mitochondrial matrixâ€localized protein with attenuated antiâ€apoptotic activity. FEBS Letters, 2010, 584, 3323-3330.	2.8	36
27	Promoter Knock-In Mutations Reveal a Role of Mcl-1 in Thymocyte-Positive Selection and Tissue or Cell Lineage-Specific Regulation of Mcl-1 Expression. Journal of Immunology, 2009, 182, 2959-2968.	0.8	11
28	Critical Roles of Translationally Controlled Tumor Protein in the Homeostasis and TCR-Mediated Proliferation of Peripheral T Cells. Journal of Immunology, 2009, 183, 2373-2381.	0.8	9
29	CBAP interacts with the un-liganded common β-subunit of the GM-CSF/IL-3/IL-5 receptor and induces apoptosis via mitochondrial dysfunction. Oncogene, 2008, 27, 1397-1403.	5.9	7
30	Survival Factor Withdrawal-induced Apoptosis of TF-1 Cells Involves a TRB2-Mcl-1 Axis-dependent Pathway. Journal of Biological Chemistry, 2007, 282, 21962-21972.	3.4	26
31	A Knockout Mouse Approach Reveals that TCTP Functions as an Essential Factor for Cell Proliferation and Survival in a Tissue- or Cell Type–specific Manner. Molecular Biology of the Cell, 2007, 18, 2525-2532.	2.1	171
32	Mcl-1: a highly regulated cell death and survival controller. Journal of Biomedical Science, 2006, 13, 201-204.	7.0	88
33	Transcription Factors Mediating Interleukinâ€3 Survival Signals. Vitamins and Hormones, 2006, 74, 147-163.	1.7	9
34	An Internal EELD Domain Facilitates Mitochondrial Targeting of Mcl-1 via a Tom70-dependent Pathway. Molecular Biology of the Cell, 2006, 17, 3952-3963.	2.1	42
35	Stabilization and Enhancement of the Antiapoptotic Activity of Mcl-1 by TCTP. Molecular and Cellular Biology, 2005, 25, 3117-3126.	2.3	209
36	Interleukin-3 Stimulation of <i>mcl-1</i> Gene Transcription Involves Activation of the PU.1 Transcription Factor through a p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Molecular and Cellular Biology, 2003, 23, 1896-1909.	2.3	78

HSIN-FANG YANG-YEN

#	Article	IF	CITATIONS
37	Lysophosphatidic acid promotes phorbol-ester-induced apoptosis in TF-1 cells by interfering with adhesion. Biochemical Journal, 2001, 359, 227.	3.7	16
38	Lysophosphatidic acid promotes phorbol-ester-induced apoptosis in TF-1 cells by interfering with adhesion. Biochemical Journal, 2001, 359, 227-233.	3.7	27
39	The Osteopontin-CD44 Survival Signal Involves Activation of the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway. Journal of Biological Chemistry, 2001, 276, 46024-46030.	3.4	207
40	CREB Is One Component of the Binding Complex of the Ces-2/E2A-HLF Binding Element and Is an Integral Part of the Interleukin-3 Survival Signal. Molecular and Cellular Biology, 2001, 21, 4636-4646.	2.3	36
41	Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. Journal of Clinical Investigation, 2001, 107, 351-362.	8.2	547
42	Coupling of Osteopontin and Its Cell Surface Receptor CD44 to the Cell Survival Response Elicited by Interleukin-3 or Granulocyte-Macrophage Colony-Stimulating Factor. Molecular and Cellular Biology, 2000, 20, 2734-2742.	2.3	87
43	Optimal Proliferation of a Hematopoietic Progenitor Cell Line Requires Either Costimulation With Stem Cell Factor or Increase of Receptor Expression That Can Be Replaced by Overexpression of Bcl-2. Blood, 1999, 93, 2569-2577.	1.4	19
44	The Antiapoptotic Gene <i>mcl-1</i> Is Up-Regulated by the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway through a Transcription Factor Complex Containing CREB. Molecular and Cellular Biology, 1999, 19, 6195-6206.	2.3	335
45	Cytokine Receptor Common β Chain as a Potential Activator of Cytokine Withdrawal-Induced Apoptosis. Molecular and Cellular Biology, 1999, 19, 7399-7409.	2.3	8
46	Optimal Proliferation of a Hematopoietic Progenitor Cell Line Requires Either Costimulation With Stem Cell Factor or Increase of Receptor Expression That Can Be Replaced by Overexpression of Bcl-2. Blood, 1999, 93, 2569-2577.	1.4	1
47	Activation of Stat3 by v-Src Is through a Ras-Independent Pathway. Journal of Biomedical Science, 1998, 5, 446-450.	7.0	7
48	<i>mcl-1</i> Is an Immediate-Early Gene Activated by the Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Signaling Pathway and Is One Component of the GM-CSF Viability Response. Molecular and Cellular Biology, 1998, 18, 4883-4898.	2.3	183
49	Molecular Mechanisms of Growth and Death Control of Hematopoietic Cells by Cytokines. , 1997, , 125-133.		0
50	Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutrition and Cancer, 1996, 26, 111-120.	2.0	252
51	Ras Transformation Results in an Elevated Level of Cyclin D1 and Acceleration of G ₁ Progression in NIH 3T3 cells. Molecular and Cellular Biology, 1995, 15, 3654-3663.	2.3	272
52	Various modes of gene regulation by nuclear receptors for steroid and thyroid hormones. European Journal of Clinical Pharmacology, 1993, 45, S9-S15.	1.9	38
53	Characterization of factors that direct transcription of rat ribosomal DNA Molecular and Cellular Biology, 1990, 10, 3105-3116.	2.3	112
54	Interaction of RNA polymerase I transcription factors with a promoter in the nontranscribed spacer of rat ribosomal DNA. Nucleic Acids Research, 1990, 18, 1677-1718.	14.5	28

HSIN-FANG YANG-YEN

#	Article	IF	CITATIONS
55	Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction. Cell, 1990, 62, 1205-1215.	28.9	1,618
56	Purification and characterization of a high-mobility-group-like DNA-binding protein that stimulates rRNA synthesis in vitro Molecular and Cellular Biology, 1988, 8, 3406-3414.	2.3	65
57	Additional RNA polymerase I initiation site within the nontranscribed spacer region of the rat rRNA gene Molecular and Cellular Biology, 1987, 7, 2388-2396.	2.3	57
58	Partial nucleotide sequence of a 3.4kb fragment from the rat ribosomal DNA nontranscribed spacer. Nucleic Acids Research, 1986, 14, 5557-5562.	14.5	10
59	Characterization of rat ribosomal DNA II. Journal of Molecular Biology, 1985, 184, 389-398.	4.2	16