David Scheuring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1939624/publications.pdf

Version: 2024-02-01

36 papers 1,630 citations

331670 21 h-index 501196 28 g-index

44 all docs 44 docs citations

times ranked

44

1758 citing authors

#	Article	IF	CITATIONS
1	Multivesicular Bodies Mature from the <i>Trans</i> -Colgi Network/Early Endosome in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 3463-3481.	6.6	236
2	The Endoplasmic Reticulum Is the Main Membrane Source for Biogenesis of the Lytic Vacuole in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 3434-3449.	6.6	162
3	Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 452-457.	7.1	130
4	Retromer recycles vacuolar sorting receptors from the <i>trans </i> -Golgi network. Plant Journal, 2010, 61, 107-121.	5.7	115
5	Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. ELife, 2015, 4, .	6.0	95
6	Sorting of plant vacuolar proteins is initiated in the ER. Plant Journal, 2010, 62, 601-614.	5.7	79
7	The Syntaxins SYP31 and SYP81 Control ER–Golgi Trafficking in the Plant Secretory Pathway. Traffic, 2008, 9, 1629-1652.	2.7	76
8	Investigations on <scp>VELVET</scp> regulatory mutants confirm the role of host tissue acidification and secretion of proteins in the pathogenesis of <i>Botrytis cinerea</i> . New Phytologist, 2018, 219, 1062-1074.	7.3	76
9	Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway. BMC Plant Biology, 2012, 12, 164.	3.6	62
10	The AAA-type ATPase AtSKD1 contributes to vacuolar maintenance of Arabidopsis thaliana. Plant Journal, 2010, 64, no-no.	5.7	59
11	CRISPR/Cas with ribonucleoprotein complexes and transiently selected telomere vectors allows highly efficient marker-free and multiple genome editing in Botrytis cinerea. PLoS Pathogens, 2020, 16, e1008326.	4.7	55
12	Vacuolar Staining Methods in Plant Cells. Methods in Molecular Biology, 2015, 1242, 83-92.	0.9	50
13	Real-time monitoring of subcellular H2O2 distribution in <i>Chlamydomonas reinhardtii</i> Cell, 2021, 33, 2935-2949.	6.6	50
14	Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance. Plant Physiology, 2021, 187, 2716-2730.	4.8	50
15	Multiple knockout mutants reveal a high redundancy of phytotoxic compounds contributing to necrotrophic pathogenesis of Botrytis cinerea. PLoS Pathogens, 2022, 18, e1010367.	4.7	45
16	Trying to make sense of retromer. Trends in Plant Science, 2012, 17, 431-439.	8.8	44
17	ER Import Sites and Their Relationship to ER Exit Sites: A New Model for Bidirectional ER-Golgi Transport in Higher Plants. Frontiers in Plant Science, 2012, 3, 143.	3.6	35
18	Sorting nexins 1 and 2a locate mainly to the TGN. Protoplasma, 2013, 250, 235-240.	2.1	32

#	Article	IF	CITATIONS
19	To Lead or to Follow: Contribution of the Plant Vacuole to Cell Growth. Frontiers in Plant Science, 2020, 11, 553.	3.6	32
20	ARF1 Localizes to the Golgi and the <i>Trans</i> -Golgi Network. Plant Cell, 2011, 23, 846-849.	6.6	30
21	Plant Cells under Attack: Unconventional Endomembrane Trafficking during Plant Defense. Plants, 2020, 9, 389.	3.5	24
22	NET4 Modulates the Compactness of Vacuoles in Arabidopsis thaliana. International Journal of Molecular Sciences, 2019, 20, 4752.	4.1	18
23	Tricho- and atrichoblast cell files show distinct PIN2 auxin efflux carrier exploitations and are jointly required for defined auxin-dependent root organ growth. Journal of Experimental Botany, 2015, 66, 5103-5112.	4.8	17
24	Fast and global reorganization of the chloroplast protein biogenesis network during heat acclimation. Plant Cell, 2022, 34, 1075-1099.	6.6	13
25	CTP Synthase 2 From Arabidopsis thaliana Is Required for Complete Embryo Development. Frontiers in Plant Science, 2021, 12, 652434.	3.6	7
26	Differential degradation of RNA species by autophagy-related pathways in Arabidopsis. Journal of Experimental Botany, 2021, 72, 6867-6881.	4.8	5
27	Intracellular Auxin Transport. , 2014, , 61-73.		4
28	On the discovery of an endomembrane compartment in plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10623-10624.	7.1	3
29	Vacuolar occupancy is crucial for cell elongation and growth regardless of the underlying mechanism. Plant Signaling and Behavior, 2021, 16, 1922796.	2.4	3
30	Proteome Analysis of Vacuoles Isolated from Fig (<i>Ficus carica</i> L.) Flesh during Fruit Development. Plant and Cell Physiology, 2022, 63, 785-801.	3.1	2
31	Title is missing!. , 2020, 16, e1008326.		O
32	Title is missing!. , 2020, 16, e1008326.		0
33	Title is missing!. , 2020, 16, e1008326.		O
34	Title is missing!. , 2020, 16, e1008326.		0
35	Title is missing!. , 2020, 16, e1008326.		0
36	Title is missing!. , 2020, 16, e1008326.		0