J L Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/193958/publications.pdf Version: 2024-02-01

II CHEN

#	Article	IF	CITATIONS
1	Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 2007, 15, 159-166.	0.9	526
2	Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research, 2008, 44, .	1.7	449
3	Basin scale estimates of evapotranspiration using GRACE and other observations. Geophysical Research Letters, 2004, 31, .	1.5	405
4	Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet. Science, 2006, 313, 1958-1960.	6.0	348
5	Global evaluation of new <scp>GRACE</scp> mascon products for hydrologic applications. Water Resources Research, 2016, 52, 9412-9429.	1.7	344
6	Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geoscience, 2009, 2, 859-862.	5.4	268
7	The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resources Research, 2010, 46, .	1.7	218
8	2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. Journal of Geophysical Research, 2009, 114, .	3.3	210
9	Long-term groundwater variations in Northwest India from satellite gravity measurements. Global and Planetary Change, 2014, 116, 130-138.	1.6	208
10	Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geoscience, 2013, 6, 549-552.	5.4	167
11	GRACE detects coseismic and postseismic deformation from the Sumatraâ€Andaman earthquake. Geophysical Research Letters, 2007, 34, .	1.5	162
12	Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophysical Research Letters, 2005, 32, .	1.5	154
13	Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	143
14	Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO. Global and Planetary Change, 2015, 126, 35-45.	1.6	142
15	Groundwater Storage Changes: Present Status from GRACE Observations. Surveys in Geophysics, 2016, 37, 397-417.	2.1	133
16	Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophysical Research Letters, 2007, 34, .	1.5	126
17	Time-variable gravity from space and present-day mass redistribution in theEarth system. Earth and Planetary Science Letters, 2010, 298, 263-274.	1.8	126
18	Antarctic mass rates from GRACE. Geophysical Research Letters, 2006, 33, .	1.5	114

#	Article	IF	CITATIONS
19	Longâ€ŧerm Caspian Sea level change. Geophysical Research Letters, 2017, 44, 6993-7001.	1.5	97
20	Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity. Journal of Geodesy, 2007, 81, 237-245.	1.6	95
21	Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Global and Planetary Change, 2016, 139, 56-65.	1.6	95
22	Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE). Water Resources Research, 2006, 42, .	1.7	93
23	Geophysical interpretation of observed geocenter variations. Journal of Geophysical Research, 1999, 104, 2683-2690.	3.3	92
24	Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica. Journal of Geodesy, 2015, 89, 925-940.	1.6	92
25	Recent La Plata basin drought conditions observed by satellite gravimetry. Journal of Geophysical Research, 2010, 115, .	3.3	91
26	Seasonal global water mass budget and mean sea level variations. Geophysical Research Letters, 1998, 25, 3555-3558.	1.5	86
27	Global Terrestrial Water Storage Changes and Connections to ENSO Events. Surveys in Geophysics, 2018, 39, 1-22.	2.1	81
28	Antarctic regional ice loss rates from GRACE. Earth and Planetary Science Letters, 2008, 266, 140-148.	1.8	80
29	Hydrologic implications of <scp>GRACE</scp> satellite data in the <scp>C</scp> olorado <scp>R</scp> iver <scp>B</scp> asin. Water Resources Research, 2015, 51, 9891-9903.	1.7	79
30	Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. Journal of Geophysical Research, 2005, 110, .	3.3	78
31	Alaskan mountain glacial melting observed by satellite gravimetry. Earth and Planetary Science Letters, 2006, 248, 368-378.	1.8	78
32	Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	77
33	Low degree gravitational changes from GRACE: Validation and interpretation. Geophysical Research Letters, 2004, 31, .	1.5	75
34	Revised atmospheric excitation function series related to Earth's variable rotation under consideration of surface topography. Journal of Geophysical Research, 2006, 111, .	3.3	75
35	Comparison of Groundwater Storage Changes From GRACE Satellites With Monitoring and Modeling of Major U.S. Aquifers. Water Resources Research, 2020, 56, e2020WR027556.	1.7	73
36	Rapid ice melting drives Earth's pole to the east. Geophysical Research Letters, 2013, 40, 2625-2630.	1.5	72

#	Article	IF	CITATIONS
37	Interannual variability of Greenland ice losses from satellite gravimetry. Journal of Geophysical Research, 2011, 116, .	3.3	71
38	Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models. Journal of Geodesy, 2005, 79, 532-539.	1.6	68
39	GRACE's spatial aliasing error. Geophysical Journal International, 2008, 172, 41-48.	1.0	67
40	Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry. Surveys in Geophysics, 2022, 43, 305-345.	2.1	65
41	Hydrological excitations of polar motion, 1993-2002. Geophysical Journal International, 2005, 160, 833-839.	1.0	59
42	Longâ€ŧerm and seasonal Caspian Sea level change from satellite gravity and altimeter measurements. Journal of Geophysical Research: Solid Earth, 2017, 122, 2274-2290.	1.4	58
43	Hydrological and oceanic excitations to polar motion andlength-of-day variation. Geophysical Journal International, 2000, 141, 149-156.	1.0	56
44	S2 tide aliasing in GRACE time-variable gravity solutions. Journal of Geodesy, 2009, 83, 679-687.	1.6	54
45	Low degree gravity changes from GRACE, Earth rotation, geophysical models, and satellite laser ranging. Journal of Geophysical Research, 2008, 113, .	3.3	51
46	Seasonal sea level change from TOPEX/Poseidon observation and thermal contribution. Journal of Geodesy, 2000, 73, 638-647.	1.6	48
47	Retrieving snow mass from GRACE terrestrial water storage change with a land surface model. Geophysical Research Letters, 2007, 34, .	1.5	48
48	Global Ocean Mass Change From GRACE and GRACE Followâ€On and Altimeter and Argo Measurements. Geophysical Research Letters, 2020, 47, e2020GL090656.	1.5	47
49	Low degree gravitational changes from earth rotation and geophysical models. Geophysical Research Letters, 2003, 30, .	1.5	37
50	Global sea level change signatures observed by GRACE satellite gravimetry. Scientific Reports, 2018, 8, 13519.	1.6	37
51	Basin‣cale River Runoff Estimation From GRACE Gravity Satellites, Climate Models, and In Situ Observations: A Case Study in the Amazon Basin. Water Resources Research, 2020, 56, e2020WR028032.	1.7	36
52	Seasonal water storage change of the Yangtze River basin detected by GRACE. Science in China Series D: Earth Sciences, 2006, 49, 483-491.	0.9	34
53	Quantification of Ocean Mass Change Using Gravity Recovery and Climate Experiment, Satellite Altimeter, and Argo Floats Observations. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,212.	1.4	33
54	Contributions of Altimetry and Argo to Nonâ€Closure of the Global Mean Sea Level Budget Since 2016. Geophysical Research Letters, 2021, 48, e2021GL092824.	1,5	33

#	Article	IF	CITATIONS
55	Global mass balance and the length-of-day variation. Journal of Geophysical Research, 2005, 110, .	3.3	32
56	Satellite gravimetry and mass transport in the earth system. Geodesy and Geodynamics, 2019, 10, 402-415.	1.0	32
57	Observations of annual variations of the Earth's gravitational field using satellite laser ranging and geophysical models. Geophysical Research Letters, 2000, 27, 1783-1786.	1.5	29
58	Anthropogenic and climateâ€driven water depletion in Asia. Geophysical Research Letters, 2016, 43, 9061-9069.	1.5	29
59	Seasonal excitation of polar motion. Journal of Geodynamics, 2012, 62, 8-15.	0.7	28
60	A new assessment of long-wavelength gravitational variations. Journal of Geophysical Research, 2000, 105, 16271-16277.	3.3	27
61	Assessing water storage changes of Lake Poyang from multi-mission satellite data and hydrological models. Journal of Hydrology, 2020, 590, 125229.	2.3	27
62	Interannual variability of low-degree gravitational change, 1980?2002. Journal of Geodesy, 2005, 78, 535-543.	1.6	26
63	Long-Term Water Storage Changes of Lake Volta from GRACE and Satellite Altimetry and Connections with Regional Climate. Remote Sensing, 2017, 9, 842.	1.8	26
64	Geocenter variations derived from GPS tracking of the GRACE satellites. Journal of Geodesy, 2009, 83, 895-901.	1.6	25
65	Improved Quantification of Global Mean Ocean Mass Change Using GRACE Satellite Gravimetry Measurements. Geophysical Research Letters, 2019, 46, 13984-13991.	1.5	24
66	Surface Mass Variations from GPS and GRACE/GFO: A Case Study in Southwest China. Remote Sensing, 2020, 12, 1835.	1.8	23
67	Error Assessment of GRACE and GRACE Followâ€On Mass Change. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022124.	1.4	23
68	Oceanic excitations on polar motion: a cross comparison among models. Geophysical Journal International, 2005, 162, 390-398.	1.0	22
69	Groundwater Storage Changes: Present Status from GRACE Observations. Space Sciences Series of ISSI, 2016, , 207-227.	0.0	22
70	Topographic effects on coseismic gravity change for the 2011 Tohokuâ€Oki earthquake and comparison with GRACE. Journal of Geophysical Research: Solid Earth, 2016, 121, 5509-5537.	1.4	21
71	Missing Hydrological Contribution to Sea Level Rise. Geophysical Research Letters, 2019, 46, 12049-12055.	1.5	20
72	Interannual mean sea level change and the Earth's water mass budget. Geophysical Research Letters, 2000, 27, 3073-3076.	1.5	19

#	Article	IF	CITATIONS
73	Oceanic effects on polar motion determined from an ocean model and satellite altimetry: 1993-2001. Journal of Geophysical Research, 2004, 109, .	3.3	19
74	Deriving surface motion of mountain glaciers in the Tuomuer-Khan Tengri Mountain Ranges from PALSAR images. Global and Planetary Change, 2013, 101, 61-71.	1.6	19
75	Interannual Oscillations in Earth Rotation. Journal of Geophysical Research: Solid Earth, 2019, 124, 13404-13414.	1.4	19
76	The Greenland Ice Sheet Response to Transient Climate Change. Journal of Climate, 2011, 24, 3469-3483.	1.2	17
77	Broadband assessment of degreeâ€2 gravitational changes from GRACE and other estimates, 2002–2015. Journal of Geophysical Research: Solid Earth, 2016, 121, 2112-2128.	1.4	16
78	Ellipsoidal Correction in GRACE Surface Mass Change Estimation. Journal of Geophysical Research: Solid Earth, 2017, 122, 9437-9460.	1.4	16
79	A multirheology ice model: Formulation and application to the Greenland ice sheet. Journal of Geophysical Research, 2011, 116, .	3.3	15
80	Seismologic applications of GRACE time-variable gravity measurements. Earthquake Science, 2014, 27, 229-245.	0.4	15
81	Largeâ€scale mass redistribution in the oceans, 1993–2001. Geophysical Research Letters, 2003, 30, .	1.5	14
82	lce and groundwater effects on long term polar motion (1979–2010). Journal of Geodynamics, 2017, 106, 66-73.	0.7	14
83	Reconciling GRACE and GPS estimates of long-term load deformation in southern Greenland. Geophysical Journal International, 2018, 212, 1302-1313.	1.0	14
84	Seismic Impact of Large Earthquakes on Estimating Global Mean Ocean Mass Change from GRACE. Remote Sensing, 2020, 12, 935.	1.8	14
85	Sea level fingerprints and regional sea level change. Earth and Planetary Science Letters, 2021, 567, 116985.	1.8	14
86	Decadal Polar Motion of the Earth Excited by the Convective Outer Core From Geodynamo Simulations. Journal of Geophysical Research: Solid Earth, 2017, 122, 8459-8473.	1.4	13
87	Earth's Rotation: Observations and Relation to Deep Interior. Surveys in Geophysics, 2022, 43, 149-175.	2.1	13
88	Hydrological impacts on seasonal sea level change. Global and Planetary Change, 2001, 32, 25-32.	1.6	12
89	Long-term and inter-annual mass changes of Patagonia Ice Field from GRACE. Geodesy and Geodynamics, 2019, 10, 100-109.	1.0	12
90	Improved Estimation of Regional Surface Mass Variations from GRACE Intersatellite Geopotential Differences Using a Priori Constraints. Remote Sensing, 2020, 12, 2553.	1.8	11

#	Article	IF	CITATIONS
91	Antarctic ice mass variations from 1979 to 2017 driven by anomalous precipitation accumulation. Scientific Reports, 2020, 10, 20366.	1.6	11
92	Discrete polar motion equations for high frequencies. Journal of Geodesy, 1996, 70, 581-585.	1.6	9
93	Geophysical contributions to satellite nodal residual variation. Journal of Geophysical Research, 1999, 104, 23237-23244.	3.3	9
94	Global terrestrial water storage connectivity revealed using complex climate network analyses. Nonlinear Processes in Geophysics, 2015, 22, 433-446.	0.6	8
95	Decadal and quadratic variations of Earth's oblateness and polar ice mass balance from 1979 to 2010. Geophysical Journal International, 2015, 203, 475-481.	1.0	8
96	Constrained Linear Deconvolution of GRACE Anomalies to Correct Spatial Leakage. Remote Sensing, 2020, 12, 1798.	1.8	7
97	Secular polar motion observed by GRACE. Journal of Geodesy, 2021, 95, 40.	1.6	7
98	Tropospheric and stratospheric wind contributions to Earth's variable rotation from NCEP/NCAR reanalyses (2000-2005). Geophysical Journal International, 2008, 174, 453-463.	1.0	6
99	Geocenter motion time series derived from GRACE GPS and LAGEOS observations. Journal of Geodesy, 2019, 93, 1931-1942.	1.6	6
100	Assessment of degree-2 order-1 gravitational changes from GRACE and GRACE Follow-on, Earth rotation, satellite laser ranging, and models. Journal of Geodesy, 2021, 95, 1.	1.6	6
101	Thermosteric Effects on Interannual and Long-term Global Mean Sea Level Changes. Journal of Geodesy, 2006, 80, 240-247.	1.6	5
102	Sea-Level Fingerprints Due to Present-Day Water Mass Redistribution in Observed Sea-Level Data. Remote Sensing, 2021, 13, 4667.	1.8	5
103	Uncertainty in GRACE/GRACE-follow on global ocean mass change estimates due to mis-modeled glacial isostatic adjustment and geocenter motion. Scientific Reports, 2022, 12, 6617.	1.6	5
104	Reassessment of electromagnetic core-mantle coupling and its implications to the Earth's decadal polar motion. Geodesy and Geodynamics, 2019, 10, 356-362.	1.0	4
105	Contributions of hydrological processes to sea level change. Physics and Chemistry of the Earth, 2002, 27, 1439-1443.	1.2	3
106	A new ice sheet model validated by remote sensing of the Greenland ice sheet. Open Geosciences, 2010, 2, .	0.6	3
107	Filters to estimate water storage variations from GRACE. , 2005, , 607-611.		2
108	Vertical motion at TEHN (Iran) from Caspian Sea and other environmental loads. Journal of Geodynamics, 2018, 122, 17-24.	0.7	2

#	Article	IF	CITATIONS
109	Uncertainty Assessments of Load Deformation from Different GPS Time Series Products, GRACE Estimates and Model Predictions: A Case Study over Europe. Remote Sensing, 2021, 13, 2765.	1.8	2
110	Groundwater Storage Monitoring From Space. , 2018, , 295-314.		1
111	Applications of Gravity Recovery and Climate Experiment (GRACE) in global groundwater study. , 2021, , 531-543.		1
112	Multi-Sensor Monitoring of Low-Degree Gravitational Changes. International Association of Geodesy Symposia, 2012, , 293-300.	0.2	1
113	Global sea level change signatures observed by GRACE satellite gravimetry. , 0, .		1
114	Discrete polar motion equations for high frequencies. Journal of Geodesy, 1996, 70, 581-585.	1.6	1
115	Polar motion excitation $\hat{a} \in \hat{A}$ broad-band perspective. Journal of Geodynamics, 2012, 62, 2-7.	0.7	0
116	Monitoring Terrestrial Water Cycle in Tibetan Plateau Using Satellite Gravimetry. Acta Geologica Sinica, 2013, 87, 626-671.	0.8	0
117	Foreword: International Space Science Institute (ISSI) Workshop on Remote Sensing and Water Resources. Surveys in Geophysics, 2016, 37, 191-194.	2.1	0
118	Geodetic Observations as a Monitor of Climate Change. , 0, , 72-88.		0
119	Tracking Earth's Water in Motion from Satellite Gravity Observations. Encyclopedia of Earth Sciences Series, 2021, , 1813-1819.	0.1	0
120	Gravity Field, Temporal Variations from Space Techniques. Encyclopedia of Earth Sciences Series, 2021, , 621-626.	0.1	0
121	Impact of Large-Scale Ocean–Atmosphere Interactions on Interannual Water Storage Changes in the Tropics and Subtropics. Remote Sensing, 2021, 13, 3529	1.8	0
122	Tracking Earth's Water in Motion from Satellite Gravity Observations. Encyclopedia of Earth Sciences Series, 2020, , 1-7.	0.1	0