
Patrick M Boyle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1939517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology. Europace, 2022, 24, 313-330.	1.7	33
2	Assessment of arrhythmia mechanism and burden of the infarcted ventricles following remuscularization with pluripotent stem cell-derived cardiomyocyte patches using patient-derived models. Cardiovascular Research, 2022, 118, 1247-1261.	3.8	11
3	Personalized computational heart models with T1-mapped fibrotic remodeling predict sudden death risk in patients with hypertrophic cardiomyopathy. ELife, 2022, 11, .	6.0	18
4	The Purkinje–myocardial junction is the anatomic origin of ventricular arrhythmia in CPVT. JCI Insight, 2022, 7, .	5.0	16
5	Identifying risk of adverse outcomes in COVID-19 patients via artificial intelligence–powered analysis of 12-lead intake electrocardiogram. Cardiovascular Digital Health Journal, 2022, 3, 62-74.	1.3	5
6	Translational applications of computational modelling for patients with cardiac arrhythmias. Heart, 2021, 107, 456-461.	2.9	7
7	Fibrosis, atrial fibrillation and stroke: clinical updates and emerging mechanistic models. Heart, 2021, 107, 99-105.	2.9	33
8	Characterizing the arrhythmogenic substrate in personalized models of atrial fibrillation: sensitivity to mesh resolution and pacing protocol in AF models. Europace, 2021, 23, i3-i11.	1.7	7
9	OptoGap is an optogenetics-enabled assay for quantification of cell–cell coupling in multicellular cardiac tissue. Scientific Reports, 2021, 11, 9310.	3.3	11
10	Computational modeling identifies embolic stroke of undetermined source patients with potential arrhythmic substrate. ELife, 2021, 10, .	6.0	11
11	Characterization of the Electrophysiologic Remodeling of Patients With Ischemic Cardiomyopathy by Clinical Measurements and Computer Simulations Coupled With Machine Learning. Frontiers in Physiology, 2021, 12, 684149.	2.8	10
12	Optogenetic Stimulation Using Anion Channelrhodopsin (GtACR1) Facilitates Termination of Reentrant Arrhythmias With Low Light Energy Requirements: A Computational Study. Frontiers in Physiology, 2021, 12, 718622.	2.8	13
13	Ventricular arrhythmia risk prediction in repaired Tetralogy of Fallot using personalized computational cardiac models. Heart Rhythm, 2020, 17, 408-414.	0.7	35
14	Dynamic voltage threshold adjusted substrate modification technique for complex atypical atrial flutters with varying circuits. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 1273-1280.	1.2	4
15	Leave the light on: chronic optogenetic tachypacing of human engineered cardiac tissue constructs. Cardiovascular Research, 2020, 116, 1405-1406.	3.8	1
16	Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nature Biomedical Engineering, 2019, 3, 870-879.	22.5	170
17	New insights on the cardiac safety factor: Unraveling the relationship between conduction velocity and robustness of propagation. Journal of Molecular and Cellular Cardiology, 2019, 128, 117-128.	1.9	20
18	A comprehensive, multiscale framework for evaluation of arrhythmias arising from cell therapy in the whole post-myocardial infarcted heart. Scientific Reports, 2019, 9, 9238.	3.3	21

PATRICK M BOYLE

#	Article	IF	CITATIONS
19	Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes. Medical Image Analysis, 2019, 55, 65-75.	11.6	59
20	Computational Identification of Ventricular Arrhythmia Risk in Pediatric Myocarditis. Pediatric Cardiology, 2019, 40, 857-864.	1.3	21
21	Arrhythmogenic propensity of the fibrotic substrate after atrial fibrillation ablation: a longitudinal study using magnetic resonance imaging-based atrial models. Cardiovascular Research, 2019, 115, 1757-1765.	3.8	43
22	Personalizing therapy for atrial fibrillation: the role of stem cell and in silico disease models. Cardiovascular Research, 2018, 114, 931-943.	3.8	12
23	Cardiac Optogenetics: 2018. JACC: Clinical Electrophysiology, 2018, 4, 155-167.	3.2	49
24	Termination of reâ€entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models. Journal of Physiology, 2018, 596, 181-196.	2.9	15
25	Personalized imaging and modeling strategies for arrhythmia prevention and therapy. Current Opinion in Biomedical Engineering, 2018, 5, 21-28.	3.4	26
26	Relationship Between Fibrosis Detected onÂLateÂGadolinium-Enhanced CardiacÂMagnetic Resonance and Re-EntrantÂActivity Assessed WithÂElectrocardiographic Imaging inÂHumanÂPersistent Atrial Fibrillation. JACC: Clinical Electrophysiology, 2018, 4, 17-29.	3.2	109
27	Arrhythmia dynamics in computational models of the atria following virtual ablation of re-entrant drivers. Europace, 2018, 20, iii45-iii54.	1.7	17
28	Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nature Biomedical Engineering, 2018, 2, 732-740.	22.5	184
29	The Fibrotic Substrate in Persistent Atrial Fibrillation Patients: Comparison Between Predictions From Computational Modeling and Measurements From Focal Impulse and Rotor Mapping. Frontiers in Physiology, 2018, 9, 1151.	2.8	31
30	Comparing Reentrant Drivers Predicted by Image-Based Computational Modeling and Mapped by Electrocardiographic Imaging in Persistent Atrial Fibrillation. Frontiers in Physiology, 2018, 9, 414.	2.8	34
31	Modeling the Aging Heart. , 2018, , 345-355.		0
32	Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate. Chaos, 2017, 27, 093932.	2.5	64
33	Using personalized computer models to custom-tailor ablation procedures for atrial fibrillation patients: are we there yet?. Expert Review of Cardiovascular Therapy, 2017, 15, 339-341.	1.5	15
34	Calcium Dynamics and Cardiac Arrhythmia. Clinical Medicine Insights: Cardiology, 2017, 11, 117954681773952.	1.8	11
35	Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study. Journal of Physiology, 2016, 594, 6879-6891.	2.9	45
36	Feasibility of using patient-specific models and the "minimum cut―algorithm to predict optimal ablation targets for left atrial flutter. Heart Rhythm, 2016, 13, 1687-1698.	0.7	84

PATRICK M BOYLE

#	Article	IF	CITATIONS
37	Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovascular Research, 2016, 110, 443-454.	3.8	244
38	Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. Progress in Biophysics and Molecular Biology, 2016, 121, 185-194.	2.9	12
39	Early somatic mosaicism is a rare cause of long-QT syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11555-11560.	7.1	39
40	Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. Europace, 2016, 18, iv136-iv145.	1.7	49
41	Light-based Approaches to Cardiac Arrhythmia Research: From Basic Science to Translational Applications. Clinical Medicine Insights: Cardiology, 2016, 10s1, CMC.S39711.	1.8	7
42	Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. Journal of Clinical Investigation, 2016, 126, 3894-3904.	8.2	148
43	Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability. Scientific Reports, 2015, 5, 17350.	3.3	38
44	Computational modeling of cardiac optogenetics: Methodology overview & review of findings from simulations. Computers in Biology and Medicine, 2015, 65, 200-208.	7.0	27
45	Stochastic spontaneous calcium release events trigger premature ventricular complexes by overcoming electrotonic load. Cardiovascular Research, 2015, 107, 175-183.	3.8	41
46	Cardiac Arrhythmias: Mechanistic Knowledge and Innovation from Computer Models. Modeling, Simulation and Applications, 2015, , 1-27.	1.3	0
47	"Beauty is a light in the heart― The transformative potential of optogenetics for clinical applications in cardiovascular medicine1. Trends in Cardiovascular Medicine, 2015, 25, 73-81.	4.9	32
48	Sodium Current Reduction Unmasks a Structure-Dependent Substrate for Arrhythmogenesis in the Normal Ventricles. PLoS ONE, 2014, 9, e86947.	2.5	22
49	Advances in modeling ventricular arrhythmias: from mechanisms to the clinic. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 209-224.	6.6	46
50	Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach. Frontiers in Physiology, 2014, 5, 435.	2.8	48
51	Dantrolene Improves Survival After Ventricular Fibrillation by Mitigating Impaired Calcium Handling in Animal Models. Circulation, 2014, 129, 875-885.	1.6	47
52	See the light: can optogenetics restore healthy heartbeats? And, if it can, is it really worth the effort?. Expert Review of Cardiovascular Therapy, 2014, 12, 17-20.	1.5	18
53	Optogenetics-enabled dynamic modulation of action potential duration in atrial tissue: feasibility of a novel therapeutic approach. Europace, 2014, 16, iv69-iv76.	1.7	34
54	A comprehensive multiscale framework for simulating optogenetics in the heart. Nature Communications, 2013, 4, 2370.	12.8	104

PATRICK M BOYLE

#	Article	IF	CITATIONS
55	Transmural IK(ATP) heterogeneity as a determinant of activation rate gradient during early ventricular fibrillation: Mechanistic insights from rabbit ventricular models. Heart Rhythm, 2013, 10, 1710-1717.	0.7	25
56	Fusion during entrainment of orthodromic reciprocating tachycardia is enhanced for basal pacing sites but diminished when pacing near Purkinje system end points. Heart Rhythm, 2013, 10, 444-451.	0.7	22
57	Computational cardiology: how computer simulations could be used to develop new therapies and advance existing ones. Europace, 2012, 14, v82-v89.	1.7	36
58	Propagating unstable wavelets in cardiac tissue. Physical Review E, 2012, 85, 011909.	2.1	2
59	Purkinje-mediated Effects in the Response of Quiescent Ventricles to Defibrillation Shocks. Annals of Biomedical Engineering, 2010, 38, 456-468.	2.5	39
60	Simulations of Reduced Conduction Reserve in the Diabetic Rat Heart: Response to Uncoupling and Reduced Excitability. Annals of Biomedical Engineering, 2010, 38, 1415-1425.	2.5	11
61	Effects of the Purkinje System and Cardiac Geometry on Biventricular Pacing: A Model Study. Annals of Biomedical Engineering, 2010, 38, 1388-1398.	2.5	72
62	Insulation of a synthetic hydrogen metabolism circuit in bacteria. Journal of Biological Engineering, 2010, 4, 3.	4.7	108
63	Arrhythmogenesis by single ectopic beats originating in the Purkinje system. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1002-H1011.	3.2	49
64	A New Safety Factor Formulation for Cardiac Propagation. , 2010, , .		0
65	An Intuitive Safety Factor for Cardiac Propagation. Biophysical Journal, 2010, 98, L57-L59.	0.5	36
66	Modeling the Role of the Coronary Vasculature During External Field Stimulation. IEEE Transactions on Biomedical Engineering, 2010, 57, 2335-2345.	4.2	49
67	Near-real-time simulations of biolelectric activity in small mammalian hearts using graphical processing units. , 2009, 2009, 3290-3.		19
68	Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies. Journal of Electrocardiology, 2009, 42, 157.e1-157.e10.	0.9	75
69	Arrhythmogenic mechanisms of the Purkinje system during electric shocks: A modeling study. Heart Rhythm, 2009, 6, 1782-1789.	0.7	41
70	The Purkinje System and Cardiac Geometry: Assessing Their Influence on the Paced Heart. Lecture Notes in Computer Science, 2009, , 68-77.	1.3	1
71	Behaviour of the Purkinje System During Defibrillation-Strength Shocks. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 419-22.	0.5	3