Didier Lereclus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1939411/publications.pdf

Version: 2024-02-01

78 6,210 43 76
papers citations h-index g-index

82 82 82 82 3022

82 82 82 3022 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Construction of cloning vectors for Bacillus thuringiensis. Gene, 1991, 108, 115-119.	1.0	412
2	PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Molecular Microbiology, 1999, 32, 1043-1053.	1.2	320
3	The <i>Bacillus cereus</i> Group: <i>Bacillus</i> Species with Pathogenic Potential. Microbiology Spectrum, 2019, 7, .	1.2	317
4	Bacillus thuringiensis: an impotent pathogen?. Trends in Microbiology, 2010, 18, 189-194.	3.5	297
5	The PlcR Virulence Regulon of Bacillus cereus. PLoS ONE, 2008, 3, e2793.	1.1	262
6	A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO Journal, 2002, 21, 4550-4559.	3.5	241
7	The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology (United Kingdom), 2000, 146, 2825-2832.	0.7	202
8	Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics, 2002, 2, 784-791.	1.3	175
9	Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Molecular Microbiology, 2001, 40, 963-975.	1.2	171
10	Structural and functional analysis of the promoter region involved in full expression of the crylllA toxin gene of Bacillus thuringiensis. Molecular Microbiology, 1994, 13, 97-107.	1.2	150
11	How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Current Opinion in Microbiology, 2012, 15, 220-231.	2.3	144
12	Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chemico-Biological Interactions, 2008, 171, 236-249.	1.7	140
13	Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18490-18495.	3.3	132
14	A cell–cell communication system regulates protease production during sporulation in bacteria of the ⟨i⟩Bacillus cereus⟨/i⟩ group. Molecular Microbiology, 2011, 82, 619-633.	1.2	111
15	A comparative study ofBacillus cereus,Bacillus thuringiensis andBacillus anthracis extracellular proteomes. Proteomics, 2005, 5, 3696-3711.	1.3	110
16	CwpFM (EntFM) Is a <i>Bacillus cereus</i> Potential Cell Wall Peptidase Implicated in Adhesion, Biofilm Formation, and Virulence. Journal of Bacteriology, 2010, 192, 2638-2642.	1.0	109
17	The InhA2 Metalloprotease of Bacillus thuringiensis Strain 407 Is Required for Pathogenicity in Insects Infected via the Oral Route. Journal of Bacteriology, 2002, 184, 3296-3304.	1.0	106
18	Overproduction of Encapsulated Insecticidal Crystal Proteins in a Bacillus thuringiensis spoOA Mutant. Nature Biotechnology, 1995, 13, 67-71.	9.4	104

#	Article	IF	Citations
19	Quorum Sensing in Bacillus thuringiensis Is Required for Completion of a Full Infectious Cycle in the Insect. Toxins, 2014, 6, 2239-2255.	1.5	103
20	Genetic Differentiation between Sympatric Populations of Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology, 2002, 68, 1414-1424.	1.4	101
21	Characterization of plasmid pAW63, a second self-transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD73. Microbiology (United Kingdom), 1998, 144, 1263-1270.	0.7	100
22	The InhA Metalloproteases of (i>Bacillus cereus (i>Contribute Concomitantly to Virulence. Journal of Bacteriology, 2010, 192, 286-294.	1.0	99
23	Molecular relationships among plasmids ofBacillus thuringiensis: Conserved sequences through 11 crystalliferous strains. Molecular Genetics and Genomics, 1982, 186, 391-398.	2.4	98
24	Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes and Infection, 2006, 8, 1483-1491.	1.0	94
25	Necrotrophism Is a Quorum-Sensing-Regulated Lifestyle in Bacillus thuringiensis. PLoS Pathogens, 2012, 8, e1002629.	2.1	94
26	Specificity and Polymorphism of the PlcR-PapR Quorum-Sensing System in the Bacillus cereus Group. Journal of Bacteriology, 2005, 187, 1182-1187.	1.0	93
27	Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide PapR. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1047-1052.	3.3	90
28	The InhA1 metalloprotease allows spores of the B.â \in f cereus group to escape macrophages. Cellular Microbiology, 2005, 7, 1357-1364.	1.1	89
29	Expansion of Insecticidal Host Range of Bacillus Thuringiensis by in vivo Genetic Recombination. Bio/technology, 1992, 10, 418-421.	1.9	87
30	Distinct Mutations in PlcR Explain Why Some Strains of the Bacillus cereus Group Are Nonhemolytic. Journal of Bacteriology, 2004, 186, 3531-3538.	1.0	87
31	FlhA Influences Bacillus thuringiensis PlcR-Regulated Gene Transcription, Protein Production, and Virulence. Applied and Environmental Microbiology, 2005, 71, 8903-8910.	1.4	87
32	Relationship of plcR -Regulated Factors to Bacillus Endophthalmitis Virulence. Infection and Immunity, 2003, 71, 3116-3124.	1.0	85
33	SinR Controls Enterotoxin Expression in Bacillus thuringiensis Biofilms. PLoS ONE, 2014, 9, e87532.	1.1	83
34	Haemolysin II is a Bacillus cereus virulence factor that induces apoptosis of macrophages. Cellular Microbiology, 2011, 13, 92-108.	1.1	81
35	InhA1, NprA, and HlyII as Candidates for Markers To Differentiate Pathogenic from Nonpathogenic <i>Bacillus cereus</i> Strains. Journal of Clinical Microbiology, 2010, 48, 1358-1365.	1.8	79
36	Regulation of cry Gene Expression in Bacillus thuringiensis. Toxins, 2014, 6, 2194-2209.	1.5	77

#	Article	IF	CITATIONS
37	BacillusEndophthalmitis: Roles of Bacterial Toxins and Motility during Infection. , 2005, 46, 3233.		67
38	Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation The GenBank/EMBL/DDBJ accession number for the sequence reported in this paper is AF287346 Microbiology (United Kingdom), 2001, 147, 1805-1813.	0.7	60
39	Contribution of Membrane-Damaging Toxins to Bacillus Endophthalmitis Pathogenesis. Infection and Immunity, 2002, 70, 5381-5389.	1.0	59
40	Peptide-binding dependent conformational changes regulate the transcriptional activity of the quorum-sensor NprR. Nucleic Acids Research, 2013, 41, 7920-7933.	6.5	57
41	The Bacillus thuringiensis PlcR-Regulated Gene inhA2 Is Necessary, but Not Sufficient, for Virulence. Journal of Bacteriology, 2003, 185, 2820-2825.	1.0	54
42	The Social Biology of Quorum Sensing in a Naturalistic Host Pathogen System. Current Biology, 2014, 24, 2417-2422.	1.8	54
43	CodY Regulates the Activity of the Virulence Quorum Sensor PlcR by Controlling the Import of the Signaling Peptide PapR in Bacillus thuringiensis. Frontiers in Microbiology, 2015, 6, 1501.	1.5	50
44	Complete Genome Sequence of Bacillus thuringiensis subsp. <i>kurstaki</i> Strain HD73. Genome Announcements, 2013, 1, e0008013.	0.8	47
45	Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection. MBio, 2015, 6, e00138-15.	1.8	47
46	How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis. PLoS Pathogens, 2016, 12, e1005779.	2.1	46
47	Weak Transcription of the <i>cry1Ac</i> Gene in Nonsporulating Bacillus thuringiensis Cells. Applied and Environmental Microbiology, 2012, 78, 6466-6474.	1.4	38
48	Survival and conjugation of Bacillus thuringiensis in a soil microcosm. FEMS Microbiology Ecology, 2000, 31, 255-259.	1.3	37
49	Genetic and functional analyses of krs, a locus encoding kurstakin, a lipopeptide produced by Bacillus thuringiensis. Research in Microbiology, 2017, 168, 356-368.	1.0	33
50	Identification of the Promoter in the Intergenic Region between <i>orf1</i> and <i>cry8Ea1</i> Controlled by Sigma H Factor. Applied and Environmental Microbiology, 2012, 78, 4164-4168.	1.4	29
51	Activity of the <i><scp>B</scp>acillus thuringiensis</i> â€ <scp>NprR</scp> – <scp>NprX</scp> cell–cell communication system is coâ€ordinated to the physiological stage through a complex transcriptional regulation. Molecular Microbiology, 2013, 88, 48-63.	1.2	29
52	CalY is a major virulence factor and a biofilm matrix protein. Molecular Microbiology, 2019, 111, 1416-1429.	1.2	29
53	PlcRa, a New Quorum-Sensing Regulator from Bacillus cereus, Plays a Role in Oxidative Stress Responses and Cysteine Metabolism in Stationary Phase. PLoS ONE, 2012, 7, e51047.	1.1	29
54	Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis. Research in Microbiology, 2017, 168, 331-344.	1.0	28

#	Article	IF	CITATIONS
55	Division of labour and terminal differentiation in a novel <i>Bacillus thuringiensis</i> strain. ISME Journal, 2015, 9, 286-296.	4.4	26
56	The oligopeptide ABC-importers are essential communication channels in Gram-positive bacteria. Research in Microbiology, 2019, 170, 338-344.	1.0	26
57	Diversity of the Rap–Phr quorum-sensing systems in the Bacillus cereus group. Current Genetics, 2019, 65, 1367-1381.	0.8	21
58	Glucose 6P Binds and Activates HlyIIR to Repress Bacillus cereus Haemolysin hlyII Gene Expression. PLoS ONE, 2013, 8, e55085.	1.1	21
59	Two distinct pathways lead Bacillus thuringiensis to commit to sporulation in biofilm. Research in Microbiology, 2017, 168, 388-393.	1.0	19
60	InhA1-Mediated Cleavage of the Metalloprotease NprA Allows Bacillus cereus to Escape From Macrophages. Frontiers in Microbiology, 2018, 9, 1063.	1.5	19
61	Turning off Bacillus cereus quorum sensing system with peptidic analogs. Chemical Communications, 2018, 54, 9777-9780.	2.2	19
62	The <i>Bacillus cereus </i> Group: <i>Bacillus </i> Species with Pathogenic Potential., 0,, 875-902.		16
63	A plasmidâ€borne Rapâ€Phr system regulates sporulation of <i>Bacillus thuringiensis</i> in insect larvae. Environmental Microbiology, 2018, 20, 145-155.	1.8	15
64	Elucidating the Hot Spot Residues of Quorum Sensing Peptidic Autoinducer PapR by Multiple Amino Acid Replacements. Frontiers in Microbiology, 2019, 10, 1246.	1.5	15
65	The stationary phase regulator CpcR activates <i>cry</i> gene expression in nonâ€sporulating cells of <i>Bacillus thuringiensis</i> Molecular Microbiology, 2020, 113, 740-754.	1.2	10
66	NprR, a moonlighting quorum sensor shifting from a phosphatase activity to a transcriptional activator. Microbial Cell, 2016, 3, 573-575.	1.4	10
67	Analysis of abrB Expression during the Infectious Cycle of Bacillus thuringiensis Reveals Population Heterogeneity. Frontiers in Microbiology, 2017, 8, 2471.	1.5	9
68	Rap-Phr Systems from Plasmids pAW63 and pHT8-1 Act Together To Regulate Sporulation in the Bacillus thuringiensis Serovar kurstaki HD73 Strain. Applied and Environmental Microbiology, 2020, 86, .	1.4	9
69	The signaling peptide NprX controlling sporulation and necrotrophism is imported into <i>Bacillus thuringiensis</i> by two oligopeptide permease systems. Molecular Microbiology, 2019, 112, 219-232.	1.2	7
70	Immune Inhibitor A Metalloproteases Contribute to Virulence in <i>Bacillus</i> Endophthalmitis. Infection and Immunity, 2021, 89, e0020121.	1.0	7
71	Beneficial and detrimental spore-formers: a world of diversity. Research in Microbiology, 2017, 168, 307-308.	1.0	6
72	The signaling peptide PapR is required for the activity of the quorum-sensor PlcRa in Bacillus thuringiensis. Microbiology (United Kingdom), 2020, 166, 398-410.	0.7	6

#	Article	IF	CITATIONS
73	Draft Genome Sequence of Bacillus thuringiensis Strain LM1212, Isolated from the Cadaver of an <i>Oryctes gigas</i> Larva in Madagascar. Genome Announcements, 2014, 2, .	0.8	3
74	The Transcription Factor CpcR Determines Cell Fate by Modulating the Initiation of Sporulation in Bacillus thuringiensis. Applied and Environmental Microbiology, 2022, 88, aem0237421.	1.4	3
75	The Alternative Sigma Factor SigB Is Required for the Pathogenicity of Bacillus thuringiensis. Journal of Bacteriology, 2020, 202, .	1.0	2
76	Massive Integration of Planktonic Cells within a Developing Biofilm. Microorganisms, 2021, 9, 298.	1.6	2
77	The Fate of Bacteria of the Bacillus cereus Group in the Amoeba Environment. Microbial Ecology, 2021, , $1. $	1.4	2
78	Expression of the Bacillus thuringiensis $\langle i \rangle vip3A \langle i \rangle$ Insecticidal Toxin Gene Is Activated at the Onset of Stationary Phase by VipR, an Autoregulated Transcription Factor. Microbiology Spectrum, 2022, 10, .	1.2	0