List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1939401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials, 2022, 283, 121449.	5.7	89
2	Synergistic photothermal-photodynamic-chemotherapy toward breast cancer based on a liposome-coated core–shell AuNS@NMOFs nanocomposite encapsulated with gambogic acid. Journal of Nanobiotechnology, 2022, 20, 212.	4.2	29
3	ZIF-8 with cationic defects toward efficient ¹²⁵ I ₂ uptake for <i>in vitro</i> radiotherapy of colon cancer. Chemical Communications, 2022, 58, 6942-6945.	2.2	4
4	NIR-PTT/ROS-Scavenging/Oxygen-Enriched Synergetic Therapy for Rheumatoid Arthritis by a pH-Responsive Hybrid CeO ₂ -ZIF-8 Coated with Polydopamine. ACS Biomaterials Science and Engineering, 2022, 8, 3361-3376.	2.6	18
5	Facile and recyclable dopamine sensing by a label-free terbium(III) metalâ~`organic framework. Talanta, 2021, 221, 121399.	2.9	16
6	Metal–organic frameworks of linear trinuclear cluster secondary building units: structures and applications. Dalton Transactions, 2021, 50, 12692-12707.	1.6	12
7	Structural Insights into the Host–Guest Complexation between β-Cyclodextrin and Bio-Conjugatable Adamantane Derivatives. Molecules, 2021, 26, 2412.	1.7	8
8	In Vitro Anticancer Activity of Nanoformulated Mono―and Diâ€nuclear Pt Compounds. Chemistry - an Asian Journal, 2021, 16, 2993-3000.	1.7	1
9	Enhancing the Physiochemical Properties of Puerarin via L-Proline Co-Crystallization: Synthesis, Characterization, and Dissolution Studies of Two Phases of Pharmaceutical Co-Crystals. International Journal of Molecular Sciences, 2021, 22, 928.	1.8	11
10	Connectivity Replication of Neutral Eu ³⁺ - and Tb ³⁺ -Based Metal–Organic Frameworks (MOFs) from Anionic Cd ²⁺ -Based MOF Crystallites. Inorganic Chemistry, 2021, 60, 18614-18619.	1.9	3
11	Experimental and theoretical validations of a one-pot sequential sensing of Hg2+ and biothiols by a 3D Cu-based zwitterionic metalâ°'organic framework. Talanta, 2020, 210, 120596.	2.9	34
12	Similarities and differences between Mn(<scp>ii</scp>) and Zn(<scp>ii</scp>) coordination polymers supported by porphyrin-based ligands: synthesis, structures and nonlinear optical properties. Dalton Transactions, 2020, 49, 12622-12631.	1.6	18
13	On the Single-Crystal Structure of Tenofovir Alafenamide Mono-Fumarate: A Metastable Phase Featuring a Mixture of Co-Crystal and Salt. International Journal of Molecular Sciences, 2020, 21, 9213.	1.8	1
14	A Heterometallic Three-Dimensional Metalâ^'Organic Framework Bearing an Unprecedented One-Dimensional Branched-Chain Secondary Building Unit. Molecules, 2020, 25, 2190.	1.7	6
15	Unconventional Pyridyl Ligand Inclusion within a Flexible Metalâ€Organic Framework Bearing an N , N ′â€Điethylformamide (DEF)â€Solvated Cd 5 Cluster Secondary Building Unit. ChemPlusChem, 2020, 85, 503-509.	1.3	6
16	Sequential Ag ⁺ /biothiol and synchronous Ag ⁺ /Hg ²⁺ biosensing with zwitterionic Cu ²⁺ -based metal–organic frameworks. Analyst, The, 2020, 145, 2779-2788.	1.7	22
17	A cage-like supramolecular draw solute that promotes forward osmosis for wastewater remediation and source recovery. Journal of Membrane Science, 2020, 600, 117862.	4.1	16
18	An <i>N</i> , <i>N</i> ′-diethylformamide solvent-induced conversion cascade within a metal–organic framework single crystal. Chemical Communications, 2020, 56, 5877-5880.	2.2	10

#	Article	IF	CITATIONS
19	Zinc and Cadmium Complexes of Pyridinemethanol Carboxylates: Metal Carboxylate Zwitterions and Metal–Organic Frameworks. ChemPlusChem, 2020, 85, 832-837.	1.3	9
20	A pH-responsive supramolecular draw solute that achieves high-performance in arsenic removal via forward osmosis. Water Research, 2019, 165, 114993.	5.3	26
21	Synchronous sensing of three conserved sequences of Zika virus using a DNAs@MOF hybrid: experimental and molecular simulation studies. Inorganic Chemistry Frontiers, 2019, 6, 148-152.	3.0	33
22	Ultralow Lattice Thermal Conductivity in SnTe by Manipulating the Electron–Phonon Coupling. Journal of Physical Chemistry C, 2019, 123, 15996-16002.	1.5	36
23	Isoreticular Tp*–W–Cu–S cluster-based one-dimensional coordination polymers with an uncommon [Tp*WS ₃ Cu ₂] + [Cu] combination and their third-order nonlinear optical properties. CrystEngComm, 2019, 21, 3343-3348.	1.3	6
24	A cationic [Ag ₁₂ S ₁₂] cluster-based 2D coordination polymer and its dye composite with enhanced photocurrent and dielectric responses. Dalton Transactions, 2019, 48, 8546-8550.	1.6	6
25	Fabrication of Photoactuators: Macroscopic Photomechanical Responses of Metal–Organic Frameworks to Irradiation by UV Light. Angewandte Chemie - International Edition, 2019, 58, 9453-9458.	7.2	132
26	Photoinduced Nonlinear Contraction Behavior in Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 8543-8549.	1.7	45
27	Morphology-dependent third-order optical nonlinearity of a 2D Co-based metal–organic framework with a porphyrinic skeleton. Chemical Communications, 2019, 55, 4873-4876.	2.2	34
28	Effective loading of cisplatin into a nanoscale UiO-66 metal–organic framework with preformed defects. Dalton Transactions, 2019, 48, 5308-5314.	1.6	45
29	A Single-Crystal to Single-Crystal Conversion Scheme for a Two-Dimensional Metal–Organic Framework Bearing Linear Cd ₃ Secondary Building Units. Crystal Growth and Design, 2019, 19, 724-729.	1.4	24
30	Rectangle and [2]catenane from cluster modular construction. Chemical Communications, 2018, 54, 4168-4171.	2.2	25
31	Preparation of carbon-based AuAg alloy nanoparticles by using the heterometallic [Au ₄ Ag ₄] cluster for efficient oxidative coupling of anilines. Dalton Transactions, 2018, 47, 5780-5788.	1.6	10
32	Smoothing the single-crystal to single-crystal conversions of a two-dimensional metal–organic framework <i>via</i> the hetero-metal doping of the linear trimetallic secondary building unit. Dalton Transactions, 2018, 47, 13722-13729.	1.6	16
33	Piperazine-Based Functional Materials as Draw Solutes for Desalination via Forward Osmosis. ACS Sustainable Chemistry and Engineering, 2018, 6, 14170-14177.	3.2	18
34	Successive and Specific Detection of Hg ²⁺ and I [–] by a DNA@MOF Biosensor: Experimental and Simulation Studies. Inorganic Chemistry, 2018, 57, 8382-8389.	1.9	51
35	Guest-Induced Switchable Breathing Behavior in a Flexible Metal–Organic Framework with Pronounced Negative Gas Pressure. Inorganic Chemistry, 2018, 57, 8627-8633.	1.9	54
36	Zn-based metal–organic frameworks (MOFs) of pyridinemethanol–carboxylate conjugated ligands: Deprotonation-dependent structures and CO2 adsorption. Polyhedron, 2018, 153, 218-225.	1.0	16

#	Article	IF	CITATIONS
37	Co2 and Co3 Mixed Cluster Secondary Building Unit Approach toward a Three-Dimensional Metal-Organic Framework with Permanent Porosity. Molecules, 2018, 23, 755.	1.7	19
38	Evaluating the component contribution to nonlinear optical performances using stable [Ni ₄ O ₄] cuboidal clusters as models. Dalton Transactions, 2018, 47, 8865-8869.	1.6	12
39	Deciphering the Structural Relationships of Five Cd-Based Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 6522-6531.	1.9	41
40	Tungsten(VI)–Copper(I)–Sulfur Cluster-Supported Metal–Organic Frameworks Bridged by <i>in Situ</i> Click-Formed Tetrazolate Ligands. Inorganic Chemistry, 2017, 56, 5669-5679.	1.9	33
41	A crystalline zinc(<scp>ii</scp>) complex showing hollow hexagonal tubular morphology evolution, selective dye absorption and unique response to UV irradiation. Chemical Communications, 2017, 53, 5515-5518.	2.2	25
42	A cuboidal [Ni ₄ O ₄] cluster as a precursor for recyclable, carbon-supported nickel nanoparticle reduction catalysts. Dalton Transactions, 2017, 46, 7154-7158.	1.6	15
43	Palladium(<scp>ii</scp>) and palladium(<scp>ii</scp>)–silver(<scp>i</scp>) complexes with N-heterocyclic carbene and zwitterionic thiolate mixed ligands: synthesis, structural characterization and catalytic properties. Dalton Transactions, 2017, 46, 1832-1839.	1.6	20
44	Efficient ring-opening polymerization (ROP) of Îμ-caprolactone catalysed by isomeric pyridyl β-diketonate iron(<scp>iii</scp>) complexes. New Journal of Chemistry, 2017, 41, 14457-14465.	1.4	20
45	Epitaxial encapsulation of homodispersed CeO ₂ in a cobalt–porphyrin network derived thin film for the highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 20126-20130.	5.2	36
46	Versatile thiomolybdate(thiotungstate)–copper–sulfide clusters and multidimensional polymers linked by cyanides. Coordination Chemistry Reviews, 2017, 350, 248-274.	9.5	48
47	A unique cooperative catalytic system carrying metallic iron and 2-hydroxyethyl 2-bromoisobutyrate for the controlled/living ring-opening polymerization of Îμ-caprolactone. RSC Advances, 2016, 6, 11400-11406.	1.7	8
48	Utilisation of gold nanoparticles on amine-functionalised UiO-66 (NH ₂ -UiO-66) nanocrystals for selective tandem catalytic reactions. Chemical Communications, 2016, 52, 6557-6560.	2.2	59
49	Assembly of [Tp*WS ₃ Cu ₂]-Supported Coordination Polymers from Linkers with a Unique 1¼-Pyridyl Bridging Mode and Their Enhanced Third-Order Nonlinear Optical Performances. Crystal Growth and Design, 2016, 16, 3206-3214.	1.4	21
50	Rational construction of functional molybdenum (tungsten)–copper–sulfur coordination oligomers and polymers from preformed cluster precursors. Chemical Society Reviews, 2016, 45, 4995-5019.	18.7	113
51	Counterintuitive Solid-State Syntheses of Indium-Thiolate-Phen Cations as Efficient and Selective Fluorescent Biosensors for HIV-1 ds-DNA and Sudan Ebolavirus RNA Sequences. ChemistrySelect, 2016, 1, 2979-2987.	0.7	6
52	Inorganic–organic hybrid sorbent for aromatic desulfurization of hydrocarbons: regenerative adsorption based on a charge-transfer complex. RSC Advances, 2016, 6, 85381-85389.	1.7	5
53	Site-selective homo- and hetero-metallic doping of a 1D Zn-based coordination polymer to enhance the dimensionality and photocurrent responses. CrystEngComm, 2016, 18, 3048-3054.	1.3	18
54	A zwitterionic 1D/2D polymer co-crystal and its polymorphic sub-components: a highly selective sensing platform for HIV ds-DNA sequences. Dalton Transactions, 2016, 45, 5092-5100.	1.6	39

#	Article	IF	CITATIONS
55	Diverse Tp*-Capped W–Cu–S Clusters from One-Pot Assembly Involving in Situ Thiolation of Phosphines. Inorganic Chemistry, 2016, 55, 1861-1871.	1.9	32
56	Metal–Organic Frameworks via Emissive Metal arboxylate Zwitterion Intermediates. ChemPlusChem, 2015, 80, 1231-1234.	1.3	15
57	Heterometallic transition metal clusters and cluster-supported coordination polymers derived from Tp- and Tp*-based Mo(W) sulfido precursors. Coordination Chemistry Reviews, 2015, 293-294, 187-210.	9.5	65
58	Pyrididine-Carboxylate Ligands as Double-Bridge Spacers in CuIMetallacycles. European Journal of Inorganic Chemistry, 2015, 2015, 876-881.	1.0	10
59	Spacer-Directed Selective Assembly of Copper Square or Hexagon and Ring-Stacks or Coordination Nanotubes. Inorganic Chemistry, 2015, 54, 6680-6686.	1.9	8
60	Unlocking Inter―to Nonâ€Penetrating Frameworks Using Steric Influences on Spacers for CO ₂ Adsorption. Chemistry - an Asian Journal, 2015, 10, 2117-2120.	1.7	10
61	Solvent effect-driven assembly of W/Cu/S cluster-based coordination polymers from the cluster precursor [Et ₄ N][Tp*WS ₃ (CuBr) ₃] and CuCN: isolation, structures and enhanced NLO responses. Dalton Transactions, 2015, 44, 130-137.	1.6	30
62	Isolation of first row transition metal-carboxylate zwitterions. RSC Advances, 2015, 5, 42978-42989.	1.7	11
63	A 1D anionic coordination polymer showing superior Congo Red sorption and its dye composite exhibiting remarkably enhanced photocurrent response. Chemical Communications, 2015, 51, 14893-14896.	2.2	113
64	A unique Zn(<scp>ii</scp>)-based MOF fluorescent probe for the dual detection of nitroaromatics and ketones in water. CrystEngComm, 2015, 17, 9404-9412.	1.3	78
65	Thienoaceneâ€Fused Pentalenes: Syntheses, Structures, Physical Properties and Applications for Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2015, 21, 2019-2028.	1.7	35
66	Construction of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) metal–organic frameworks of diimidazole and dicarboxylate mixed ligands for the catalytic photodegradation of rhodamine B in water. CrystEngComm, 2015, 17, 1935-1943.	1.3	48
67	Dianthraceno[a,e]pentalenes: synthesis, crystallographic structures and applications in organic field-effect transistors. Chemical Communications, 2015, 51, 503-506.	2.2	70
68	A Three-Component 1D/2D → 2D Interpenetrated Coordination Network: Structure and Gas Adsorption Studies. Australian Journal of Chemistry, 2014, 67, 1391.	0.5	2
69	Stitching 2D Polymeric Layers into Flexible Interpenetrated Metal–Organic Frameworks within Single Crystals. Angewandte Chemie - International Edition, 2014, 53, 4628-4632.	7.2	62
70	Bent tritopic carboxylates for coordination networks: clues to the origin of self-penetration. CrystEngComm, 2014, 16, 7722-7730.	1.3	21
71	Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: syntheses, structures and chain length dependent physical properties. Chemical Science, 2014, 5, 4490-4503.	3.7	62
72	Distinct optical and kinetic responses from E/Z isomers of caspase probes with aggregation-induced emission characteristics. Journal of Materials Chemistry B, 2014, 2, 4363-4370.	2.9	47

WEN-HUA ZHANG

#	Article	IF	CITATIONS
73	Two Clusterâ€Based Coordination Polymers Derived from [Et ₄ N][Tp*WS ₃ (CuBr) ₃] and CuCN: Isolation, Structures and Amplified Thirdâ€Order Nonlinear Optical Responses. Chinese Journal of Chemistry, 2014, 32, 1065-1071.	2.6	3
74	<i>para</i> â€Quinodimethaneâ€Bridged Perylene Dimers and Pericondensed Quaterrylenes: The Effect of the Fusion Mode on the Ground States and Physical Properties. Chemistry - A European Journal, 2014, 20, 11410-11420.	1.7	46
75	Transmetalation of a Dodecahedral Na ₉ Aggregate-Based Polymer: A Facile Route to Water Stable Cu(II) Coordination Networks. Inorganic Chemistry, 2014, 53, 7446-7454.	1.9	30
76	Stable 7,14-Disubstituted-5,12-Dithiapentacenes with Quinoidal Conjugation. Organic Letters, 2014, 16, 3966-3969.	2.4	44
77	Construction of Cd(ii) coordination polymers used as catalysts for the photodegradation of organic dyes in polluted water. CrystEngComm, 2014, 16, 2158.	1.3	86
78	Nickel(II) thiolates derived from transmetallation reaction of [Zn(Tab)4](PF6)2 with Ni(II) ions and their catalytic activity toward the CN coupling reactions. Inorganic Chemistry Communication, 2014, 46, 159-162.	1.8	10
79	Dibenzoheptazethrene Isomers with Different Biradical Characters: An Exercise of Clar's Aromatic Sextet Rule in Singlet Biradicaloids. Journal of the American Chemical Society, 2013, 135, 18229-18236.	6.6	167
80	Trans [Oî€Re ^V –OH] core stabilised by chelating N-heterocyclic dicarbene ligands. Dalton Transactions, 2013, 42, 871-873.	1.6	12
81	Spacer length-directed construction of two-dimensional [MoS3Cu3]-based coordination polymers from a precursor cluster [PPh4][Cpâ^—MoS3(CuNCS)3] (Cpâ^—=η5-C5Me5) and 4-pyridyl-based ditopic ligands. Polyhedron, 2013, 52, 1457-1464.	1.0	6
82	Enhanced Emission and Analyte Sensing by Cinchonine Iridium(III) Cyclometalated Complexes Bearing Bent Diphosphine Chelators. Organometallics, 2013, 32, 2908-2917.	1.1	23
83	NATURALLY EFFICIENT EMITTERS: LUMINESCENT ORGANOMETALLIC COMPLEXES DERIVED FROM NATURAL PRODUCTS. Journal of Molecular and Engineering Materials, 2013, 01, 1330003.	0.9	1
84	Soluble Phosphorescent Iridium(III) Complexes from Cinchonine-Derived Ligands. Organometallics, 2012, 31, 553-559.	1.1	18
85	One-step entry to olefin-tethered N,S-heterocyclic carbene complexes of ruthenium with mixed ligands. Dalton Transactions, 2012, 41, 5988.	1.6	17
86	Complexation of 1,1′-bis(diphenylphosphino)ferrocene dioxide (dppfO2) with 3d metals and revisit of its coordination to Pd(ii). Dalton Transactions, 2011, 40, 10725.	1.6	13
87	Nuclearity growth towards Ni(ii) cubane in self-assembly with 2-hydroxymethyl pyridine (hmpH) and 5-ethoxycarbonyl-2-hydroxymethyl pyridine (5-ehmpH). CrystEngComm, 2011, 13, 2915.	1.3	23
88	Phosphorescent Emitters from Natural Products: Cinchonine-Derived Iridium(III) Complexes. Organometallics, 2011, 30, 2137-2143.	1.1	15
89	Recent advances in metal catalysts with hybrid ligands. Coordination Chemistry Reviews, 2011, 255, 1991-2024.	9.5	149
90	How Does a Non- <i>C</i> ₃ -Symmetry Guest Molecule Fit into a <i>C</i> ₃ -Symmetry Host Cavity?. Crystal Growth and Design, 2010, 10, 3-6.	1.4	27

#	Article	IF	CITATIONS
91	Formation of Four Different [MoOS3Cu3]-Based Coordination Polymers from the Same Components via Four Synthetic Routes. Crystal Growth and Design, 2009, 9, 1461-1469.	1.4	40

- CS2 elimination and C–S bond cleavage in [Zn(dmpzdtc)2] Leading to formation of a cyclic octanuclear complex [Zn4(μ-dmpz)5(Ĩ¼-OH)(μ3-S)(py)]2·py(dmpzdtc=3,5-dimethylpyrazole-1-dithiocarboxylat⊛) Tj ETQ‡@ 0 0 rgB 92

93	Solvothermal syntheses, crystal structures, and luminescent properties of two novel silver(I) coordination polymers containing 5-aryl-substituted tetrazolate ligands. Journal of Molecular Structure, 2008, 875, 339-345.	1.8	20
94	Constructions of a set of novel hydrogen-bonded supramolecules from reactions of cobalt(II) salt with bis(3,5-dimethylpyrazolyl)methane and different carboxylic acids. Journal of Molecular Structure, 2008, 879, 119-129.	1.8	6
95	Assembly of [(Î- ⁵ -C ₅ Me ₅)MoS ₃ Cu ₃]-Supported One-Dimensional Chains with Single, Double, Triple, and Quadruple Strands. Inorganic Chemistry, 2008. 47. 5332-5346.	1.9	66
96	Stepwise Guest Exchange in a Cluster-Supported Three-Dimensional Host. Crystal Growth and Design, 2008, 8, 399-401.	1.4	48
97	Binuclear Cluster-to-Cluster-Based Supramolecular Compounds: Design, Assembly, and Enhanced Third-Order Nonlinear Optical Performances of {[Et4N]2[MoOS3Cu2(μ-CN)]2·2aniline}n and {[Et4N]4[MoOS3Cu3CN(μ′-CN)]2(μ-CN)2}n. Crystal Growth and Design, 2008, 8, 253-258.	1.4	82
98	Construction of Symmetric and Asymmetric Mo/S/Cu Clusters from a Cluster Precursor [Et ₄ N] ₂ [(edt) ₂ Mo ₂ S ₂ (î¼-S) ₂] (edt = Ethanedithiolate). Inorganic Chemistry, 2008, 47, 10461-10468.	1.9	6
99	Unique formation of two high-nuclearity metallamacrocycles from a mononuclear complex [Zn(dmpzdtc)2] (dmpzdtc = 3,5-dimethylpyrazole-1-dithiocarboxylate) via CS2 elimination. Chemical Communications, 2007, , 5052.	2.2	35
100	[(η ⁵ -C ₅ Me ₅)MoS ₃ Cu ₃]-Based Supramolecular Assemblies from the [(η ⁵ -C ₅ Me ₅)MoS ₃ (CuNCS) ₃] ⁻ Cluster Anion and Multitopic Ligands with Different Symmetries. Inorganic Chemistry, 2007, 46,	1.9	68
101	Reactions of a Tungsten Trisulfido Complex of Hydridotris(3,5-dimethylpyrazol-1-yl)borate (Tp*) [Et4N][Tp*WS3] with CuX (X = Cl, NCS, or CN):  Isolation, Structures, and Third-Order NLO Properties. Inorganic Chemistry, 2007, 46, 11381-11389.	1.9	44
102	Excited State Absorption Dynamics in Metal Cluster Polymer [WS4Cu3I(4-bpy)3]nSolution. Journal of Physical Chemistry B, 2007, 111, 7987-7993.	1.2	25
103	Protonolysis Reactions of [(Me3Si)2N]3Ln(μ-Cl)Li(thf)3 withtBuSH or EtSH: Isolation, Structures and Catalytic Properties of Dinuclear Complexes [{(Me3Si)2N}2Ln(μ-StBu)]2 and Tetranuclear Complexes [Li(thf)4][{(Me3Si)2N}4Ln4(μ4-SEt)(μ-SEt)8] (Ln = Pr, Sm). European Journal of Inorganic Chemistry, 2007, 2007, 1889-1896.	1.0	12
104	Synthesis and structural characterization of a unique 3D coordination polymer [Pb(4-pya)2]n(4-pya=trans-4-pyridylacrylate). Inorganic Chemistry Communication, 2007, 10, 485-488.	1.8	25
105	Synthesis, structure and luminescent properties of a unique [WS4Cu4]-based supramolecular compound [WS4Cu4(dmpzm)2(dca)2]â^ž. Inorganic Chemistry Communication, 2007, 10, 623-626. 	1.8	13
106	Formation of a 1D water chain into the channel of a unique 3D hydrogen-bound coordination polymer {[Cd(μ-Cl)(4-pya)(H2O)]2·4H2O}â^ž (4-pya=trans-4-pyridylacrylate). Inorganic Chemistry Communication, 2007, 10, 975-978.	1.8	13
107	Solvothermal synthesis and crystal structure of a luminescent 2D copper(I) coordination polymer with a (3,4)-connected net. Inorganic Chemistry Communication, 2007, 10, 1049-1053.	1.8	24
108	Synthesis, crystal structure and third-order nonlinear optical properties of a hexanuclear cluster [WOS3Cu2(4-tBuPy)2]2 (4-tBuPy=4-tert-butylpyridine). Journal of Molecular Structure, 2007, 829, 128-134.	1.8	14

#	Article	IF	CITATIONS
109	Toward Rational Construction of Gold, Goldâ~'Silver, and Goldâ~'Mercury String Complexes:  Syntheses, Structures, and Properties of [Au(Tab)2]2L2 (L = I and PF6), {[(Tab)2M][Au(CN)2]}2 (M = Au and Ag), and {[Hg(Tab)2][Au(CN)2]2} [Tab = 4-(Trimethylammonio)benzenethiolate]. Inorganic Chemistry, 2006, 45, 7671-7680.	1.9	53
110	Synthesis of Two Heterobimetallic Cluster Isomers [(η5-C5Me5)2Mo2(μ3-S)3S(Cul)2] and [(η5-C5Me5)2Mo2(μ3-S)4(Cul)2] fromtrans-[(η5-C5Me5)2Mo2(μ-S)2S2] and Theirtrans-to-cislsomerization, Structures, and Third-Order NLO Properties. Organometallics, 2006, 25, 4351-4357.	1.1	24
111	Assembly of a New Family of Mercury(II) Zwitterionic Thiolate Complexes from a Preformed Compound [Hg(Tab)2](PF6)2[Tab = 4-(Trimethylammonio)benzenethiolate]. Inorganic Chemistry, 2006, 45, 2568-2580.	1.9	45
112	Construction of [(η5-C5Me5)WS3Cu3]-Based Supramolecular Compounds from Preformed Incomplete Cubane-Like Clusters [PPh4][(η5-C5Me5)WS3(CuX)3] (X = CN, Br). Inorganic Chemistry, 2006, 45, 4055-4064.	1.9	56
113	Unique Formation of a Pentanuclear Lanthanum(III) Thiolate Oxide Cluster via Control of Hydrolysis. Inorganic Chemistry, 2006, 45, 1885-1887.	1.9	26
114	Reactions of the pentamethylcyclopentadienyl trisulfido tungsten with M′Cl2 (M′=Zn, Cd, Hg): Isolation and structural characterization of [PPh4][(η5·C5Me5)WS3(ZnCl2)] and [{(η5·C5Me5)WS3}2Hg]. Inorganica Chimica Acta, 2006, 359, 3507-3514.	1.2	2
115	Syntheses, crystal structures and luminescent properties of two one-dimensional coordination polymers [CuX(dmpzm)]n (X=CN, NCS; dmpzm=bis(3,5-dimethylpyrazolyl)methane). Journal of Molecular Structure, 2006, 782, 150-156.	1.8	27
116	Mo(W)/Cu/S Cluster-Based Supramolecular Arrays Assembled from Preformed Clusters [Et4N]4[WS4Cu4I6] and [(n-Bu)4N]2[MoOS3Cu3X3] (X = I, SCN) with Flexible Ditopic Ligands. Inorganic Chemistry, 2006, 45, 10487-10496.	1.9	61
117	Synthesis and Structural Characterization of Two Lead(II) Complexes of Bis(3,5-dimethylpyrazolyl)methane. Chinese Journal of Chemistry, 2006, 24, 811-816.	2.6	2
118	Construction of a Novel 2D Polymer [Co(dmpzm)(dca)2]â^ž from Reaction of a Mononuclear Complex [Co(dmpzm)Cl2] with Sodium Dicyanamide (dca) [dmpzm=bis(3,5-dimethylpyrazolyl)methane]. Chinese Journal of Chemistry, 2006, 24, 1716-1720.	2.6	10
119	Syntheses, crystal structures, and third-order nonlinear optical properties of two novel Mo/Cu/S clusters: [MoS4Cu4(l±-MePy)5Br2]·2(l±-MePy)0.5 and {[MoS4Cu4(l±-MePy)3Br](l¼-Br)·(l±-MePy)}n (l±-MePy=l±-methylpyridine). Journal of Organometallic Chemistry, 2005, 690, 394-402.	0.8	26
120	Syntheses, crystal structures and luminescent properties of two novel lanthanide/4-pya complexes: [Ln(4-pya)3(H2O)2]2 (Ln=Eu, La; 4-pya=trans-4-pyridylacrylate). Journal of Organometallic Chemistry, 2005, 690, 3479-3487.	0.8	18
121	Acetic Acid Induced Self-Assembly of Supramolecular Compounds [Et4N]3 [(WS4Cu2)2(μ-CN)3] ×2MeCN and [PPh4] [WS4Cu3(μ-CN)2]A—MeCN from Preformed Clusters [A]2[WS4(CuCN)2] (A = Et4N, PPh4) ChemInform, 2005, 36, no.	0.1	0
122	Formation of new organometallic W/Cu/S clusters from reactions of [{(η5-C5Me5)WS3}3Cu7(MeCN)9](PF6)4 with donor ligands. Crystal structures and optical limiting properties of [(η5-C5Me5)WS3Cu3(Py)6](PF6)2, [(η5-C5Me5)WS3Cu3Br(PPh3)3](PF6), and [(η5-C5Me5)WS3Cu4(Py)Cl(dppm)2](PF6)2. Journal of Organometallic Chemistry, 2005, 690, 4027-4035.	0.8	18
123	Di-μ-iodo-bis{[1,1′-methylenebis(3,5-dimethyl-1H-pyrazole-κN2)]copper(I)}. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, m4-m6.	0.4	9
124	catena-Poly[[[diaqua[trans-3-(4-pyridyl)acrylato]samarium(III)]-di-μ-trans-3-(4-pyridyl)acrylato] dihydrate]. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, m491-m493.	0.4	2
125	Bis[4-(trimethylammonio)phenyl] disulfide tetraiodomercurate(II). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m60-m62.	0.2	3
126	Acetic Acid Induced Self-Assembly of Supramolecular Compounds [Et4N]3[(WS4Cu2)2(μ-CN)3]·2MeCN and [PPh4][WS4Cu3(μ-CN)2]·MeCN from Preformed Clusters [A]2[WS4(CuCN)2] (A = Et4N, PPh4). Inorganic Chemistry, 2005, 44, 3664-3668.	1.9	52

#	Article	IF	CITATIONS
127	Construction of Polymeric and Oligomeric Lanthanide(III) Thiolates from Preformed Complexes [(TMS)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Pr, Nd, Sm; (TMS)2N = Bis(trimethylsilyl)amide). Journal of the American Chemical Society, 2005, 127, 1122-1123.	6.6	59
128	catena-Poly[[bis(pentane-2,4-dionato-κ2O,O′)cobalt(II)]-μ-4,4′-methylenedianiline-κ2N:N′]. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, m554-m556.	0.4	1
129	Poly[[silver(I)-μ-4,4′-bipyridine-μ-formato] monohydrate formic acid solvate]. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m1256-m1258.	0.2	2
	Syntheses, crystal structures and catalytic properties of a series of lanthanide(III) bis(trimethylsilyl)amide chloride complexes: [{((Me3Si)2N)2Nd(î¼â€2-Cl)Li(THF)3}(î¼-Cl)]2,		