List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1938984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pulmonary health effects of wintertime particulate matter from California and China following repeated exposure and cessation. Toxicology Letters, 2022, 354, 33-43.	0.4	1
2	Effects of life-stage and passive tobacco smoke exposure on pulmonary innate immunity and influenza infection in mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2022, 85, 439-456.	1.1	1
3	Novel aerosol treatment of airway hyper-reactivity and inflammation in a murine model of asthma with a soluble epoxide hydrolase inhibitor. PLoS ONE, 2022, 17, e0266608.	1.1	1
4	Cytotoxicity of 2D engineered nanomaterials in pulmonary and corneal epithelium. NanoImpact, 2022, 26, 100404.	2.4	3
5	Metallic Engineered Nanomaterials and Ocular Toxicity: A Current Perspective. Pharmaceutics, 2022, 14, 981.	2.0	9
6	MARCKS cooperates with NKAP to activate NF-kB signaling in smoke-related lung cancer. Theranostics, 2021, 11, 4122-4136.	4.6	25
7	Machine learning discovery of distinguishing laboratory features for severity classification of COVIDâ€19 patients. IET Cyber-Systems and Robotics, 2021, 3, 31-43.	1.1	3
8	The clear and persistent impact of air pollution on chronic respiratory diseases: a call for interventions. European Respiratory Journal, 2021, 57, 2002981.	3.1	21
9	Secondhand Smoke Decreased Excitability and Altered Action Potential Characteristics of Cardiac Vagal Neurons in Mice. Frontiers in Physiology, 2021, 12, 727000.	1.3	3
10	Identifying a reference list of respiratory sensitizers for the evaluation of novel approaches to study respiratory sensitization. Critical Reviews in Toxicology, 2021, 51, 792-804.	1.9	10
11	Long-Term Sequelae of Smoking and Cessation in Spontaneously Hypertensive Rats. Toxicologic Pathology, 2020, 48, 422-436.	0.9	5
12	Differential lung inflammation and injury with tobacco smoke exposure in Wistar Kyoto and spontaneously hypertensive rats. Inhalation Toxicology, 2020, 32, 328-341.	0.8	1
13	In vivo and in vitro inflammatory responses to fine particulate matter (PM2.5) from China and California. Toxicology Letters, 2020, 328, 52-60.	0.4	12
14	Outdoor Air Pollution and New-Onset Airway Disease. An Official American Thoracic Society Workshop Report. Annals of the American Thoracic Society, 2020, 17, 387-398.	1.5	120
15	Direct Observations of Silver Nanowire-Induced Frustrated Phagocytosis among NR8383 Lung Alveolar Macrophages. Journal of Physical Chemistry B, 2020, 124, 11584-11592.	1.2	2
16	Cardiopulmonary Health Effects of Airborne Particulate Matter: Correlating Animal Toxicology to Human Epidemiology. Toxicologic Pathology, 2019, 47, 954-961.	0.9	8
17	Respiratory Health Effects of Exposure to Ambient Particulate Matter and Bioaerosols. , 2019, 10, 1-20.		21
18	Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization. Toxicology Letters, 2018, 292, 85-96.	0.4	67

#	Article	IF	CITATIONS
19	Repeated Iron–Soot Exposure and Nose-to-brain Transport of Inhaled Ultrafine Particles. Toxicologic Pathology, 2018, 46, 75-84.	0.9	50
20	Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 2018, 361, .	6.0	893
21	Ambient particulate matter enhances the pulmonary allergic immune response to house dust mite in a BALB/c mouse model by augmenting Th2- and Th17-immune responses. Physiological Reports, 2018, 6, e13827.	0.7	24
22	Harmful Interruptions: Impact of Smoking Patterns on Tumorigenesis and Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 133-134.	1.4	3
23	TH17-Induced Neutrophils Enhance the Pulmonary Allergic Response Following BALB/c Exposure to House Dust Mite Allergen and Fine Particulate Matter From California and China. Toxicological Sciences, 2018, 164, 627-643.	1.4	31
24	Fine particulate matter (PM _{2.5}) enhances allergic sensitization in BALB/ <i>c</i> mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 197-207.	1.1	51
25	Prenatal environmental tobacco smoke exposure increases allergic asthma risk with methylation changes in mice. Environmental and Molecular Mutagenesis, 2017, 58, 423-433.	0.9	32
26	Differential pulmonary effects of wintertime California and China particulate matter in healthy young mice. Toxicology Letters, 2017, 278, 1-8.	0.4	35
27	Perinatal exposure to environmental tobacco smoke is associated with changes in DNA methylation that precede the adult onset of lung disease in a mouse model. Inhalation Toxicology, 2017, 29, 435-442.	0.8	16
28	<i>In Vitro</i> Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products: Workshop Proceedings, Conclusions and Paths Forward for <i>In Vitro</i> Model Use. ATLA Alternatives To Laboratory Animals, 2017, 45, 117-158.	0.7	21
29	Prenatal tobacco smoke exposure predisposes offspring mice to exacerbated allergic airway inflammation associated with altered innate effector function. Particle and Fibre Toxicology, 2017, 14, 30.	2.8	17
30	Nonhuman Primate Models of Respiratory Disease: Past, Present, and Future. ILAR Journal, 2017, 58, 269-280.	1.8	51
31	Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain. Environmental Health Perspectives, 2016, 124, 1870-1875.	2.8	46
32	Pulmonary health effects of air pollution. Current Opinion in Pulmonary Medicine, 2016, 22, 138-143.	1.2	313
33	Investigating the Effects of Particulate Matter on House Dust Mite and Ovalbumin Allergic Airway Inflammation in Mice. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2016, 68, 18.18.1-18.18.18.	1.1	15
34	Aerosolized Silver Nanoparticles in the Rat Lung and Pulmonary Responses over Time. Toxicologic Pathology, 2016, 44, 673-686.	0.9	29
35	Early life exposure to environmental tobacco smoke alters immune response to asbestos via a shift in inflammatory phenotype resulting in increased disease development. Inhalation Toxicology, 2016, 28, 349-356.	0.8	12
36	National Institute of Environmental Health Sciences: 50 Years of Advancing Science and Improving Lung Health. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1190-1195.	2.5	0

#	Article	IF	CITATIONS
37	Soot and house dust mite allergen cause eosinophilic laryngitis in an animal model. Laryngoscope, 2016, 126, 108-112.	1.1	16
38	Sex and strain-based inflammatory response to repeated tobacco smoke exposure in spontaneously hypertensive and Wistar Kyoto rats. Inhalation Toxicology, 2016, 28, 677-685.	0.8	17
39	Temporal and Spatial Expression of Transforming Growth Factor-Î ² after Airway Remodeling to Tobacco Smoke in Rats. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 872-881.	1.4	14
40	Pulmonary Effects of Silver Nanoparticle Size, Coating, and Dose over Time upon Intratracheal Instillation. Toxicological Sciences, 2015, 144, 151-162.	1.4	51
41	Single-Cell Mechanics Provides an Effective Means To Probe in Vivo Interactions between Alveolar Macrophages and Silver Nanoparticles. Journal of Physical Chemistry B, 2015, 119, 15118-15129.	1.2	18
42	Evolution of Silver Nanoparticles in the Rat Lung Investigated by X-ray Absorption Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 281-289.	1.1	30
43	InÂvitro and inÂvivo toxicity of urban and rural particulate matter from California. Atmospheric Environment, 2015, 103, 256-262.	1.9	31
44	Allergic Airway Inflammation is Differentially Exacerbated by Daytime and Nighttime Ultrafine and Submicron Fine Ambient Particles: Heme Oxygenase-1 as an Indicator of PM-Mediated Allergic Inflammation. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 254-266.	1.1	39
45	Influence of Particle Size on Persistence and Clearance of Aerosolized Silver Nanoparticles in the Rat Lung. Toxicological Sciences, 2015, 144, 366-381.	1.4	83
46	Aerosol droplet delivery of mesoporous silica nanoparticles: A strategy for respiratory-based therapeutics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1377-1385.	1.7	30
47	Women and Lung Disease. Sex Differences and Global Health Disparities. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 11-16.	2.5	110
48	Pulmonary inflammatory effects of source-oriented particulate matter from California's San Joaquin Valley. Atmospheric Environment, 2015, 119, 174-181.	1.9	24
49	Alterations in DNA methylation and airway hyperreactivity in response to <i>in utero</i> exposure to environmental tobacco smoke. Inhalation Toxicology, 2015, 27, 724-730.	0.8	28
50	Biological Dose Response to PM2.5: Effect of Particle Extraction Method on Platelet and Lung Responses. Toxicological Sciences, 2015, 143, 349-359.	1.4	53
51	Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition. Nanotoxicology, 2015, 9, 591-602.	1.6	48
52	Repression of CC16 by Cigarette Smoke (CS) Exposure. PLoS ONE, 2015, 10, e0116159.	1.1	52
53	Effects of Environmental Tobacco Smoke during Early Life Stages. , 2014, , 385-397.		0
54	Short versus long silver nanowires: a comparison of in vivo pulmonary effects post instillation. Particle and Fibre Toxicology, 2014, 11, 52.	2.8	37

#	Article	IF	CITATIONS
55	Nose-to-brain transport of aerosolised quantum dots following acute exposure. Nanotoxicology, 2014, 8, 885-893.	1.6	75
56	Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential. Small, 2014, 10, 385-398.	5.2	242
57	Nanoparticles, Lung Injury, and the Role of Oxidant Stress. Annual Review of Physiology, 2014, 76, 447-465.	5.6	114
58	Instillation <i>versus</i> Inhalation of Multiwalled Carbon Nanotubes: Exposure-Related Health Effects, Clearance, and the Role of Particle Characteristics. ACS Nano, 2014, 8, 8911-8931.	7.3	64
59	US EPA particulate matter research centers: summary of research results for 2005–2011. Air Quality, Atmosphere and Health, 2013, 6, 333-355.	1.5	45
60	Biological Response to Nano-Scale Titanium Dioxide (TiO ₂): Role of Particle Dose, Shape, and Retention. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 953-972.	1.1	64
61	Simvastatin inhibits smoke-induced airway epithelial injury: implications for COPD therapy. European Respiratory Journal, 2013, 42, 350-361.	3.1	41
62	Interlaboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives, 2013, 121, 676-682.	2.8	121
63	Influence of Season and Location on Pulmonary Response to California's San Joaquin Valley Airborne Particulate Matter. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 253-271.	1.1	17
64	Use of a Soluble Epoxide Hydrolase Inhibitor in Smoke-Induced Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 614-622.	1.4	45
65	Perinatal Exposure to Environmental Tobacco Smoke (ETS) Enhances Susceptibility to Viral and Secondary Bacterial Infections. International Journal of Environmental Research and Public Health, 2012, 9, 3954-3964.	1.2	12
66	Leukocytes Are Recruited through the Bronchial Circulation to the Lung in a Spontaneously Hypertensive Rat Model of COPD. PLoS ONE, 2012, 7, e33304.	1.1	27
67	A new biotelemetry system to monitor blood flow velocity, blood pressure and temperature in small animals: Preliminary data from cigarette smoke exposed SH rats. FASEB Journal, 2012, 26, 1098.16.	0.2	0
68	Maternal and Neonatal Exposure to Environmental Tobacco Smoke Targets Pro-Inflammatory Genes in Neonatal Arteries. Journal of Cardiovascular Translational Research, 2010, 3, 696-703.	1.1	9
69	Susceptibility of the Aging Lung to Environmental Injury. Seminars in Respiratory and Critical Care Medicine, 2010, 31, 539-553.	0.8	31
70	Oxidative Injury in The Lungs of Neonatal Rats Following Short-Term Exposure to Ultrafine Iron and Soot Particles. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 837-847.	1.1	27
71	Aerosols in the Agricultural Setting. Journal of Agromedicine, 2009, 14, 413-416.	0.9	5
72	Pneumoconiosis from Agricultural Dust Exposure among Young California Farmworkers. Environmental Health Perspectives, 2009, 117, 988-994.	2.8	74

#	Article	IF	CITATIONS
73	Alveolar Macrophage Recruitment and Activation by Chronic Second Hand Smoke Exposure in Mice. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2009, 6, 86-94.	0.7	25
74	Effect of Perinatal secondhand tobacco smoke exposure on in vivo and intrinsic airway structure/function in non-human primates. Toxicology and Applied Pharmacology, 2009, 234, 339-344.	1.3	10
75	Characterisation of the proximal airway squamous metaplasia induced by chronic tobacco smoke exposure in spontaneously hypertensive rats. Respiratory Research, 2009, 10, 118.	1.4	35
76	Detrimental effects of tobacco smoke exposure during development on postnatal lung function and asthma. Birth Defects Research Part C: Embryo Today Reviews, 2008, 84, 54-60.	3.6	76
77	NF-κB inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats. Toxicology and Applied Pharmacology, 2008, 230, 150-158.	1.3	38
78	Effects of environmental tobacco smoke exposure on pulmonary immune response in infant monkeys. Journal of Allergy and Clinical Immunology, 2008, 122, 400-406.e5.	1.5	40
79	Perinatal environmental tobacco smoke exposure alters the immune response and airway innervation in infant primates. Journal of Allergy and Clinical Immunology, 2008, 122, 640-647.e1.	1.5	41
80	Acute Tobacco Smoke-Induced Airways Inflammation in Spontaneously Hypertensive Rats. Inhalation Toxicology, 2008, 20, 623-633.	0.8	16
81	Mechanisms of particulate matter toxicity in neonatal and young adult rat lungs. Research Report (health Effects Institute), 2008, , 3-41; discussion 43-52.	1.6	9
82	Asthma/Allergic Airways Disease: Does Postnatal Exposure to Environmental Toxicants Promote Airway Pathobiology?. Toxicologic Pathology, 2007, 35, 97-110.	0.9	67
83	Effects of environmental tobacco smoke on the developing immune system of infant monkeys. Journal of Allergy and Clinical Immunology, 2007, 120, 445-451.	1.5	29
84	Air pollutant effects on fetal and early postnatal development. Birth Defects Research Part C: Embryo Today Reviews, 2007, 81, 144-154.	3.6	99
85	INFLUENCE OF AIR POLLUTION ON RESPIRATORY HEALTH DURING PERINATAL DEVELOPMENT. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 269-272.	0.9	117
86	Acute Pulmonary and Systemic Effects of Inhaled Coal Fly Ash in Rats: Comparison to Ambient Environmental Particles. Toxicological Sciences, 2006, 93, 390-399.	1.4	55
87	Consistent Pulmonary and Systemic Responses from Inhalation of Fine Concentrated Ambient Particles: Roles of Rat Strains Used and Physicochemical Properties. Environmental Health Perspectives, 2005, 113, 1561-1568.	2.8	58
88	Air Pollution and Lymphocyte Phenotype Proportions in Cord Blood. Environmental Health Perspectives, 2005, 113, 1391-1398.	2.8	78
89	Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2186-2191.	3.3	161
90	MAPK/AP-1 signal pathway in tobacco smoke-induced cell proliferation and squamous metaplasia in the lungs of rats. Carcinogenesis, 2005, 26, 2187-2195.	1.3	82

#	Article	IF	CITATIONS
91	Lung Tumor Response in Strain a Mice Exposed to Tobacco Smoke: Some Dose-Effect Relationships. Inhalation Toxicology, 2004, 16, 27-32.	0.8	27
92	Reduced Lung Cell Proliferation Following Short-Term Exposure to Ultrafine Soot and Iron Particles in Neonatal Rats: Key to Impaired Lung Growth?. Inhalation Toxicology, 2004, 16, 73-81.	0.8	34
93	The Effect of Cigarette Smoke Exposure on Pulmonary Metastatic Disease in a Murine Model of Metastatic Breast Cancer. Chest, 2004, 125, 1467-1471.	0.4	46
94	Oxidative stress and NFκB activation in the lungs of rats: a synergistic interaction between soot and iron particles. Toxicology and Applied Pharmacology, 2003, 190, 157-169.	1.3	91
95	Repeated episodes of ozone inhalation amplifies the effects of allergen sensitization and inhalation on airway immune and structural development in Rhesus monkeys. Toxicology and Applied Pharmacology, 2003, 191, 74-85.	1.3	95
96	Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats. Environmental Toxicology, 2003, 18, 227-235.	2.1	54
97	Airborne particles of the california central valley alter the lungs of healthy adult rats Environmental Health Perspectives, 2003, 111, 902-908.	2.8	41
98	described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and the policies of the Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for	1.3	110
99	use Free Radical Biology and Medicine, 2002, 33, 1106-1114. Synthesis of an Ultrafine Iron and Soot Aerosol for the Evaluation of Particle Toxicity. Aerosol Science and Technology, 2001, 35, 759-766.	1.5	36
100	Effect of in utero and postnatal exposure to environmental tobacco smoke on the developmental expression of pulmonary cytochrome P450 monooxygenases. , 2000, 14, 121-130.		18
101	The Mammalian Respiratory System and Critical Windows of Exposure for Children's Health. Environmental Health Perspectives, 2000, 108, 457.	2.8	39
102	Perinatal Exposure to Aged and Diluted Sidestream Cigarette Smoke Produces Airway Hyperresponsiveness in Older Rats. Toxicology and Applied Pharmacology, 1999, 155, 253-260.	1.3	47
103	Quantitative Histology and Cytochrome P-450 Immunocytochemistry of the Lung Parenchyma Following 6 Months of Exposure of Strain A/J Mice to Cigarette Sidestream Smoke. Inhalation Toxicology, 1996, 8, 927-945.	0.8	12
104	Effects of Environmental Tobacco Smoke Exposure in Utero and/or Postnatally on Brain Development1. Pediatric Research, 1996, 39, 494-498.	1.1	51
105	Six-Month Exposure of Strain A/J Mice to Cigarette Sidestream Smoke: Cell Kinetics and Lung Tumor Data. Toxicological Sciences, 1995, 26, 32-40.	1.4	3
106	Sidestream Cigarette Smoke Generation and Exposure System for Environmental Tobacco Smoke Studies. Inhalation Toxicology, 1994, 6, 79-93.	0.8	162
107	Aerosolized fluorescent microspheres detected in the lung using confocal scanning laser microscopy. Microscopy Research and Technique, 1993, 26, 437-443.	1.2	21
108	Effects of sidestream smoke exposure and age on pulmonary function and airway reactivity in developing rats. Pediatric Pulmonology, 1993, 16, 281-288.	1.0	28

#	Article	IF	CITATIONS
109	Alveolar Type II Cell Responses to Chronic Inhalation of Chrysotile Asbestos in Rats. American Journal of Respiratory Cell and Molecular Biology, 1990, 3, 543-552.	1.4	21
110	Nanomaterials and the Environment. , 0, , 1-18.		4
111	Health Effects of Inhaled Engineered Nanoscale Materials. , 0, , 367-404.		1
112	Inhalation of Silver Silicate Nanoparticles Leads to Transient and Differential Microglial Activation in the Rodent Olfactory Bulb. Toxicologic Pathology, 0, , 019262332211076.	0.9	2