
Valerie Fessard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1938928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-Term Functional Stability of Human HepaRG Hepatocytes and Use for Chronic Toxicity and Genotoxicity Studies. Drug Metabolism and Disposition, 2008, 36, 1111-1118.	3.3	152
2	Nanomaterials: certain aspects of application, risk assessment and risk communication. Archives of Toxicology, 2018, 92, 121-141.	4.2	109
3	High throughput toxicity screening and intracellular detection of nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1413.	6.1	101
4	Genotoxicity of a freshwater cyanotoxin, cylindrospermopsin, in two human cell lines: Cacoâ€2 and HepaRG. Environmental and Molecular Mutagenesis, 2010, 51, 251-259.	2.2	92
5	Toxicity, genotoxicity and proinflammatory effects of amorphous nanosilica in the human intestinal Caco-2 cell line. Toxicology in Vitro, 2015, 29, 398-407.	2.4	77
6	Genotoxicity of the marine toxin okadaic acid, in human Caco-2 cells and in mice gut cells. Environmental Toxicology, 2006, 21, 55-64.	4.0	71
7	In vivo DNA damage induced by the cyanotoxin microcystin-LR: Comparison of intra-peritoneal and oral administrations by use of the comet assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 652, 65-71.	1.7	67
8	DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes. Chemical Research in Toxicology, 2011, 24, 913-925.	3.3	66
9	Genotoxicity of pesticide mixtures present in the diet of the French population. Environmental and Molecular Mutagenesis, 2012, 53, 173-184.	2.2	66
10	Assessment of the genotoxic potential of indirect chemical mutagens in HepaRG cells by the comet and the cytokinesis-block micronucleus assays. Mutagenesis, 2010, 25, 555-560.	2.6	63
11	Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Supporting Publications, 2016, 13, .	0.7	60
12	Maitotoxin-4, a Novel MTX Analog Produced by Gambierdiscus excentricus. Marine Drugs, 2017, 15, 220.	4.6	54
13	Three-dimensional HepaRG spheroids as a liver model to study human genotoxicity in vitro with the single cell gel electrophoresis assay. Scientific Reports, 2019, 9, 10548.	3.3	54
14	Cell alterations but no DNA strand breaks inducedin vitro by cylindrospermopsin in CHO K1 cells. Environmental Toxicology, 2003, 18, 353-359.	4.0	53
15	Assessment of the <i>in vitro</i> genotoxicity of TiO ₂ nanoparticles in a regulatory context. Nanotoxicology, 2018, 12, 357-374.	3.0	52
16	Performance of Comet and Micronucleus Assays in Metabolic Competent HepaRG Cells to Predict In Vivo Genotoxicity. Toxicological Sciences, 2014, 138, 300-309.	3.1	50
17	Comparative Analysis of the Cytotoxic Effects of Okadaic Acid-Group Toxins on Human Intestinal Cell Lines. Marine Drugs, 2014, 12, 4616-4634.	4.6	49
18	Genotoxicity of synthetic amorphous silica nanoparticles in rats following shortâ€ŧerm exposure, part 2: Intratracheal instillation and intravenous injection. Environmental and Molecular Mutagenesis, 2015, 56, 228-244.	2.2	48

#	Article	IF	CITATIONS
19	Okadaic acid treatment induces DNA adduct formation in BHK21 C13 fibroblasts and HESV keratinocytes. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1996, 361, 133-141.	0.4	47
20	Characterization of cylindrospermopsin chlorination. Science of the Total Environment, 2010, 408, 3433-3442.	8.0	47
21	Impact of an Artificial Digestion Procedure on Aluminum-Containing Nanomaterials. Langmuir, 2017, 33, 10726-10735.	3.5	45
22	Cytotoxic and genotoxic effects of cylindrospermopsin in mice treated by gavage or intraperitoneal injection. Environmental Toxicology, 2012, 27, 277-284.	4.0	43
23	Genotoxicity of synthetic amorphous silica nanoparticles in rats following shortâ€ŧerm exposure. Part 1: Oral route. Environmental and Molecular Mutagenesis, 2015, 56, 218-227.	2.2	43
24	Aneugenic potential of okadaic acid revealed by the micronucleus assay combined with the FISH technique in CHO-K1 cells. Mutagenesis, 2003, 18, 293-298.	2.6	40
25	Comparative in vitro and in vivo assessment of genotoxic effects of etoposide and chlorothalonil by the comet assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1999, 444, 103-116.	1.7	38
26	Genotoxicity of Aluminum and Aluminum Oxide Nanomaterials in Rats Following Oral Exposure. Nanomaterials, 2020, 10, 305.	4.1	34
27	Collaborative study for the detection of toxic compounds in shellfish extracts using cell-based assays. Part I: screening strategy and pre-validation study with lipophilic marine toxins. Analytical and Bioanalytical Chemistry, 2012, 403, 1983-1993.	3.7	33
28	Aluminum and aluminum oxide nanomaterials uptake after oral exposure - a comparative study. Scientific Reports, 2020, 10, 2698.	3.3	31
29	A roadmap for hazard monitoring and risk assessment of marine biotoxins on the basis of chemical and biological test systems. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 487-545.	1.5	31
30	Health risk assessment related to pinnatoxins in French shellfish. Toxicon, 2020, 180, 1-10.	1.6	30
31	Marine toxin okadaic acid induces aneuploidy in CHO-K1 cells in presence of rat liver postmitochondrial fraction, revealed by cytokinesis-block micronucleus assay coupled to FISH. Environmental Toxicology, 2004, 19, 123-128.	4.0	28
32	Risk Governance of Emerging Technologies Demonstrated in Terms of its Applicability to Nanomaterials. Small, 2020, 16, e2003303.	10.0	28
33	Collaborative study for the detection of toxic compounds in shellfish extracts using cell-based assays. Part II: application to shellfish extracts spiked with lipophilic marine toxins. Analytical and Bioanalytical Chemistry, 2012, 403, 1995-2007.	3.7	26
34	DNA Adducts of the Tobacco Carcinogens 2-Amino-9 <i>H</i> -pyrido[2,3- <i>b</i>]indole and 4-Aminobiphenyl Are Formed at Environmental Exposure Levels and Persist in Human Hepatocytes. Chemical Research in Toxicology, 2013, 26, 1367-1377.	3.3	24
35	Comparative Cytotoxicity, Oxidative Stress, and Cytokine Secretion Induced by Two Cyanotoxin Variants, Microcystin LR and RR, in Human Intestinal Cacoâ€⊋ Cells. Journal of Biochemical and Molecular Toxicology, 2013, 27, 253-258.	3.0	24
36	Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells. Nanotoxicology, 2018, 12, 992-1013.	3.0	24

#	Article	IF	CITATIONS
37	Integrated approach to the in vivo genotoxic effects of a titanium dioxide nanomaterial using <i>LacZ</i> plasmidâ€based transgenic mice. Environmental and Molecular Mutagenesis, 2014, 55, 500-509.	2.2	22
38	Absence of in vitro genotoxicity potential of the mycotoxin deoxynivalenol in bacteria and in human TK6 and HepaRG cell lines. Food and Chemical Toxicology, 2014, 66, 113-121.	3.6	22
39	InÂvitro metabolism of the cyanotoxin cylindrospermopsin in HepaRG cells and liver tissue fractions. Toxicon, 2016, 110, 47-50.	1.6	22
40	Investigation of the in vitro genotoxicity of two rutile TiO2 nanomaterials in human intestinal and hepatic cells and evaluation of their interference with toxicity assays. NanoImpact, 2018, 11, 69-81.	4.5	22
41	Mixtures of Lipophilic Phycotoxins: Exposure Data and Toxicological Assessment. Marine Drugs, 2018, 16, 46.	4.6	22
42	In vitro combined cytotoxic effects of pesticide cocktails simultaneously found in the French diet. Food and Chemical Toxicology, 2013, 52, 153-162.	3.6	21
43	CYP3A4 activity reduces the cytotoxic effects of okadaic acid in HepaRG cells. Archives of Toxicology, 2014, 88, 1519-1526.	4.2	21
44	Combined Effects of Lipophilic Phycotoxins (Okadaic Acid, Azapsiracid-1 and Yessotoxin) on Human Intestinal Cells Models. Toxins, 2016, 8, 50.	3.4	21
45	Hazard identification of pyrogenic synthetic amorphous silica (NM-203) after sub-chronic oral exposure in rat: A multitarget approach. Food and Chemical Toxicology, 2020, 137, 111168.	3.6	18
46	<i>In vivo</i> genotoxic potential of microcystin‣R: A cyanobacterial toxin, investigated both by the unscheduled DNA synthesis (UDS) and the comet assays after intravenous administration. Environmental Toxicology, 2009, 24, 200-209.	4.0	17
47	Simultaneous Detection of 14 Microcystin Congeners from Tissue Samples Using UPLC- ESI-MS/MS and Two Different Deuterated Synthetic Microcystins as Internal Standards. Toxins, 2019, 11, 388.	3.4	17
48	Lack of DNA damage induction by okadaic acid, a marine toxin, in the CHO-Hprt and the in vitro UDS assays. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2004, 564, 139-147.	1.7	16
49	Okadaic acid: Chromosomal non-disjunction analysis in human lymphocytes and study of aneugenic pathway in CHO-K1 cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 578, 53-63.	1.0	16
50	Transcriptomic comparison of cyanotoxin variants in a human intestinal model revealed major differences in oxidative stress response: Effects of MC-RR and MC-LR on Caco-2 cells. Ecotoxicology and Environmental Safety, 2012, 82, 13-21.	6.0	16
51	A strategy to study genotoxicity: application to aquatic toxins, limits and solutions. Analytical and Bioanalytical Chemistry, 2010, 397, 1715-1722.	3.7	14
52	Aluminum in liver cells $\hat{a} \in $ the element species matters. Nanotoxicology, 2019, 13, 909-922.	3.0	14
53	Modulation of Chromatin Remodelling Induced by the Freshwater Cyanotoxin Cylindrospermopsin in Human Intestinal Caco-2 Cells. PLoS ONE, 2014, 9, e99121.	2.5	13
54	Co-culture model of Caco-2/HT29-MTX cells: A promising tool for investigation of phycotoxins toxicity on the intestinal barrier. Chemosphere, 2021, 273, 128497.	8.2	13

#	Article	IF	CITATIONS
55	Cytotoxicity, Fractionation and Dereplication of Extracts of the Dinoflagellate Vulcanodinium rugosum, a Producer of Pinnatoxin G. Marine Drugs, 2013, 11, 3350-3371.	4.6	12
56	Pinnatoxins' Deleterious Effects on Cholinergic Networks: From Experimental Models to Human Health. Marine Drugs, 2019, 17, 425.	4.6	12
57	Combined effects of okadaic acid and pectenotoxin-2, 13-desmethylspirolide C or yessotoxin in human intestinal Caco-2â€⁻cells. Chemosphere, 2019, 228, 139-148.	8.2	12
58	Low inÂvitro permeability of the cyanotoxin microcystin-LR across a Caco-2 monolayer: With identification of the limiting factors using modelling. Toxicon, 2014, 91, 5-14.	1.6	11
59	Identification of key pathways involved in the toxic response of the cyanobacterial toxin cylindrospermopsin in human hepatic HepaRG cells. Toxicology in Vitro, 2019, 58, 69-77.	2.4	11
60	A co-culture system of human intestinal Caco-2 cells and lymphoblastoid TK6 cells for investigating the genotoxicity of oral compounds. Mutagenesis, 2012, 27, 631-636.	2.6	10
61	Novel Insights on the Toxicity of Phycotoxins on the Gut through the Targeting of Enteric Glial Cells. Marine Drugs, 2019, 17, 429.	4.6	9
62	A strategy towards the generation of testable adverse outcome pathways for nanomaterials. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 580-594.	1.5	9
63	Metabolism of the Marine Phycotoxin PTX-2 and Its Effects on Hepatic Xenobiotic Metabolism: Activation of Nuclear Receptors and Modulation of the Phase I Cytochrome P450. Toxins, 2017, 9, 212.	3.4	8
64	Simultaneous Quantification and Visualization of Titanium Dioxide Nanomaterial Uptake at the Single Cell Level in an In Vitro Model of the Human Small Intestine. Small Methods, 2019, 3, 1800540.	8.6	8
65	Simultaneous screening of the stability and dosimetry of nanoparticles dispersions for in vitro toxicological studies with static multiple light scattering technique. Toxicology in Vitro, 2020, 69, 104972.	2.4	7
66	Cellular Effects of <i>In Vitro</i> -Digested Aluminum Nanomaterials on Human Intestinal Cells. ACS Applied Nano Materials, 2020, 3, 2246-2256.	5.0	7
67	Differences in Toxic Response Induced by Three Variants of the Diarrheic Shellfish Poisoning Phycotoxins in Human Intestinal Epithelial Caco-2 Cells. Toxins, 2020, 12, 783.	3.4	6
68	Permeability of the Cyanotoxin Microcystin-RR across a Caco-2 Cells Monolayer. Toxins, 2021, 13, 178.	3.4	6
69	Genotoxic impact of aluminum-containing nanomaterials in human intestinal and hepatic cells. Toxicology in Vitro, 2022, 78, 105257.	2.4	6
70	Benchmark dose analyses of γH2AX and pH3 endpoints for quantitative comparison of in vitro genotoxicity potential of lipophilic phycotoxins. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 852, 503169.	1.7	5
71	Chronic effects of two rutile TiO2 nanomaterials in human intestinal and hepatic cell lines. Particle and Fibre Toxicology, 2022, 19, 37.	6.2	5
72	Permeability of dihydro- and cysteine-brevetoxin metabolites across a Caco-2 cell monolayer. Harmful Algae, 2014, 32, 22-26.	4.8	4

#	Article	IF	CITATIONS
73	Cytotoxicity Assays. Comprehensive Analytical Chemistry, 2017, 78, 231-275.	1.3	3
74	Genotoxic effects of food contact recycled paperboard extracts on two human hepatic cell lines. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 159-170.	2.3	3
75	Synergic toxic effects of food contaminant mixtures in human cells. Mutagenesis, 2020, 35, 415-424.	2.6	3
76	Role of enteric glial cells in the toxicity of phycotoxins: Investigation with a tri-culture intestinal cell model. Toxicology Letters, 2021, 351, 89-98.	0.8	2
77	From Basic Research to New Tools and Challenges for the Genotoxicity Testing of Nanomaterials. Nanomaterials, 2020, 10, 2073.	4.1	1
78	In vitro investigation of the genotoxicity of portimine, a cyclic imine toxin produced by the dinoflagellate Vulcanodinium rugosum, on human hepatic HepaRG cells. Toxicology in Vitro, 2021, 73, 105125.	2.4	1
79	Pyrogenic synthetic amorphous silica (NM-203): Genotoxicity in rats following sub-chronic oral exposure. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 876-877, 503458.	1.7	1
80	Response to Letter to the Editor regarding "Collaborative study for the detection of toxic compounds in shellfish extracts using cell-based assays. Part I: screening strategy and pre-validation study with lipophilic marine toxins†and "Part II: application to shellfish extracts spiked with lipophilic marine toxins†and âIoanalytical Chemistry, 2012, 404, 1613-1614.	3.7	0
81	Metabolism of the lipophilic phycotoxin 13-Desmethylspirolide C using human and rat in vitro liver models. Toxicology Letters, 2019, 307, 17-25.	0.8	Ο
82	Toxicity of Okadaic Acid/Dinophysistoxins and Microcystins on Biological Systems. , 2014, , 253-282.		0