Javier Casqueiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1938623/publications.pdf

Version: 2024-02-01

516710 839539 1,423 19 16 18 citations g-index h-index papers 19 19 19 1701 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The Human Digestive Tract Is Capable of Degrading Gluten from Birth. International Journal of Molecular Sciences, 2020, 21, 7696.	4.1	4
2	Lactobacilli Degrade Wheat Amylase Trypsin Inhibitors to Reduce Intestinal Dysfunction Induced by Immunogenic Wheat Proteins. Gastroenterology, 2019, 156, 2266-2280.	1.3	97
3	Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nature Communications, 2019, 10, 1198.	12.8	102
4	Gluten-degrading bacteria are present in the human small intestine of healthy volunteers and celiac patients. Research in Microbiology, 2017, 168, 673-684.	2.1	62
5	The human digestive tract has proteases capable of gluten hydrolysis. Molecular Metabolism, 2017, 6, 693-702.	6. 5	34
6	Duodenal Bacteria From Patients With Celiac Disease andÂHealthy Subjects Distinctly Affect Gluten BreakdownÂandÂlmmunogenicity. Gastroenterology, 2016, 151, 670-683.	1.3	177
7	Gluten Metabolism in Humans. , 2014, , 157-170.		6
8	Diversity of the cultivable human gut microbiome involved in gluten metabolism: isolation of microorganisms with potential interest for coeliac disease. FEMS Microbiology Ecology, 2014, 88, 309-319.	2.7	99
9	Monitoring of gluten-free diet compliance in celiac patients by assessment of gliadin 33-mer equivalent epitopes in feces. American Journal of Clinical Nutrition, 2012, 95, 670-677.	4.7	141
10	Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie, 2012, 94, 1724-1729.	2.6	142
11	Differences of small intestinal bacteria populations in adults and children with/without celiac disease: Effect of age, gluten diet, and disease. Inflammatory Bowel Diseases, 2012, 18, 649-656.	1.9	143
12	A gluten metabolism study in healthy individuals shows the presence of faecal glutenasic activity. European Journal of Nutrition, 2012, 51, 293-299.	3.9	29
13	Age-Related Clinical, Serological, and Histopathological Features of Celiac Disease. American Journal of Gastroenterology, 2008, 103, 2360-2365.	0.4	114
14	A Novel Epimerization System in Fungal Secondary Metabolism Involved in the Conversion of Isopenicillin N into Penicillin N inAcremonium chrysogenum. Journal of Biological Chemistry, 2002, 277, 46216-46225.	3.4	71
15	Targeted Inactivation of the mecB Gene, Encoding Cystathionine- \hat{I}^3 -Lyase, Shows that the Reverse Transsulfuration Pathway Is Required for High-Level Cephalosporin Biosynthesis in Acremonium chrysogenum C10 but Not for Methionine Induction of the Cephalosporin Genes. Journal of Bacteriology, 2001, 183, 1765-1772.	2.2	38
16	Gene Targeting in <i>Penicillium chrysogenum</i> : Disruption of the <i>lys2</i> Gene Leads to Penicillin Overproduction. Journal of Bacteriology, 1999, 181, 1181-1188.	2.2	84
17	Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. Microbiology (United Kingdom), 1999, 145, 317-324.	1.8	41
18	Electrophoretic karyotype of the astaxanthin-producing yeast Phaffia rhodozyma. Current Genetics, 1995, 27, 447-450.	1.7	24

#	Article	IF	CITATIONS
19	Isolation of Phaffia rhodozyma auxotrophic mutants by enrichment methods Journal of General and Applied Microbiology, 1993, 39, 303-312.	0.7	15