Gwendalyn J Randolph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1938077/publications.pdf

Version: 2024-02-01

162 papers 36,704 citations

87 h-index 155 g-index

168 all docs

168
docs citations

168 times ranked 40441 citing authors

#	Article	IF	CITATIONS
1	Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nature Communications, 2022, 13, 882.	5.8	19
2	Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nature Medicine, 2022, 28, 766-779.	15.2	70
3	Na ⁺ is shifted from the extracellular to the intracellular compartment and is not inactivated by glycosaminoglycans during high salt conditions in rats. Journal of Physiology, 2022, 600, 2293-2309.	1.3	17
4	Peripheral monocyte–derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer's disease. Journal of Clinical Investigation, 2022, 132, .	3.9	25
5	Lipid absorption and overall intestinal lymphatic transport are impaired following partial small bowel resection in mice. Scientific Reports, 2022, 12, .	1.6	3
6	CXCR4-Binding Positron Emission Tomography Tracers Link Monocyte Recruitment and Endothelial Injury in Murine Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 822-836.	1.1	13
7	Dendritic cells: The first step. Journal of Experimental Medicine, 2021, 218, .	4.2	6
8	CC Chemokine Receptor 5 Targeted Nanoparticles Imaging the Progression and Regression of Atherosclerosis Using Positron Emission Tomography/Computed Tomography. Molecular Pharmaceutics, 2021, 18, 1386-1396.	2.3	15
9	30 years of observations and hopes for faster progress on promoting the status of women in science. Journal of Experimental Medicine, 2021, 218, .	4.2	O
10	Sensory Nerves Regulate Transcriptional Dynamics of Lymph Node Cells. Trends in Immunology, 2021, 42, 180-182.	2.9	4
11	Liver injury after small bowel resection is prevented in obesity-resistant 129S1/SvImJ mice. American Journal of Physiology - Renal Physiology, 2021, 320, G907-G918.	1.6	5
12	Reply. Gastroenterology, 2021, 160, 2200-2201.	0.6	O
13	Visceral obesity and insulin resistance associate with CD36 deletion in lymphatic endothelial cells. Nature Communications, 2021, 12, 3350.	5.8	66
14	Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science, 2021, 373, .	6.0	87
15	Neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells. Cell Metabolism, 2021, 33, 1449-1465.e6.	7.2	38
16	Tissue macrophages break dogma. Nature Reviews Immunology, 2021, 21, 625-625.	10.6	6
17	LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. Journal of Experimental Medicine, 2021, 218, .	4.2	31
18	Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity, 2021, 54, 2795-2811.e9.	6.6	31

#	Article	IF	CITATIONS
19	YAP and TAZ maintain PROX1 expression in the developing lymphatic and lymphovenous valves in response to VEGF-C signaling. Development (Cambridge), 2020, 147, .	1.2	28
20	Colonic Macrophages Combat Fungal Intoxication: Metchnikoff Would Be Pleased. Cell, 2020, 183, 305-307.	13.5	O
21	The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell, 2020, 182, 270-296.	13.5	352
22	Postprandial Chylomicron Output and Transport Through Intestinal Lymphatics Are Not Impaired in Active Crohn's Disease. Gastroenterology, 2020, 159, 1955-1957.e2.	0.6	4
23	Ischemia reperfusion injury provokes adverse left ventricular remodeling in dysferlin-deficient hearts through a pathway that involves TIRAP dependent signaling. Scientific Reports, 2020, 10, 14129.	1.6	5
24	Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nature Immunology, 2020, 21, 1194-1204.	7.0	115
25	Kir6.1â€dependent K _{ATP} channels in lymphatic smooth muscle and vessel dysfunction in mice with Kir6.1 gainâ€ofâ€function. Journal of Physiology, 2020, 598, 3107-3127.	1.3	34
26	Effects of high-fat diet on liver injury after small bowel resection. Journal of Pediatric Surgery, 2020, 55, 1099-1106.	0.8	12
27	⁶⁴ Cu-ATSM Positron Emission Tomography/Magnetic Resonance Imaging of Hypoxia in Human Atherosclerosis. Circulation: Cardiovascular Imaging, 2020, 13, e009791.	1.3	13
28	Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. Nature Communications, 2020, 11, 2552.	5.8	84
29	Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight, 2020, 5, .	2.3	57
30	Lymphatic and Blood Network Analysis During Obesity. Journal of Visualized Experiments, 2020, , .	0.2	О
31	A Stromal Niche Defined by Expression of the Transcription Factor WT1 Mediates Programming and Homeostasis of Cavity-Resident Macrophages. Immunity, 2019, 51, 119-130.e5.	6.6	105
32	Bhlhe40 mediates tissue-specific control of macrophage proliferation in homeostasis and type 2 immunity. Nature Immunology, 2019, 20, 687-700.	7.0	62
33	Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity. Journal of Experimental Medicine, 2019, 216, 1291-1300.	4.2	94
34	Cytokine Circuits in Cardiovascular Disease. Immunity, 2019, 50, 941-954.	6.6	125
35	Lymphatic network remodeling after small bowel resection. Journal of Pediatric Surgery, 2019, 54, 1239-1244.	0.8	9
36	Neutrophils promote VLA-4–dependent B cell antigen presentation and accumulation within the meninges during neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24221-24230.	3.3	28

#	Article	IF	Citations
37	Interleukin-17 Drives Interstitial Entrapment of Tissue Lipoproteins in Experimental Psoriasis. Cell Metabolism, 2019, 29, 475-487.e7.	7.2	38
38	B Cell–Mediated Antigen Presentation through MHC Class II Is Dispensable for Atherosclerosis Progression. ImmunoHorizons, 2019, 3, 37-44.	0.8	15
39	Editorial overview: Innate immunity: The finely tuned STING of innate immunity. Current Opinion in Immunology, 2018, 50, v-vii.	2.4	1
40	Electrophilic properties of itaconate and derivatives regulate theÂlκBζ–ATF3 inflammatory axis. Nature, 2018, 556, 501-504.	13.7	438
41	Schistosoma mansoni Infection-Induced Transcriptional Changes in Hepatic Macrophage Metabolism Correlate With an Athero-Protective Phenotype. Frontiers in Immunology, 2018, 9, 2580.	2.2	23
42	Transcriptome Analysis Reveals Nonfoamy Rather Than Foamy Plaque Macrophages Are Proinflammatory in Atherosclerotic Murine Models. Circulation Research, 2018, 123, 1127-1142.	2.0	275
43	Lymph nodes go with the flow. Journal of Experimental Medicine, 2018, 215, 2699-2701.	4.2	2
44	Macrophage Biology, Classification, and Phenotype in Cardiovascular Disease. Journal of the American College of Cardiology, 2018, 72, 2166-2180.	1.2	109
45	Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney. Scientific Reports, 2018, 8, 13948.	1.6	73
46	Interleukin- $1\hat{l}^2$ has atheroprotective effects in advanced atherosclerotic lesions of mice. Nature Medicine, 2018, 24, 1418-1429.	15.2	192
47	Limited Macrophage Positional Dynamics in Progressing or Regressing Murine Atherosclerotic Plaquesâ€"Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1702-1710.	1.1	39
48	Myeloid cells pave the way for lymphatic system development and maintenance. Pflugers Archiv European Journal of Physiology, 2017, 469, 465-472.	1.3	5
49	Monocyte differentiation and antigen-presenting functions. Nature Reviews Immunology, 2017, 17, 349-362.	10.6	663
50	Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity. Cell Metabolism, 2017, 25, 1294-1304.e6.	7.2	153
51	Sphingosine-1-Phosphate as the Lymphocyte's Ticket to Ride and Survive. Developmental Cell, 2017, 41, 576-578.	3.1	2
52	A Polecat's View of Patrolling Monocytes. Circulation Research, 2017, 120, 1699-1701.	2.0	11
53	Cardiac Lymphatic Vessels, Transport, and Healing of the Infarcted Heart. JACC Basic To Translational Science, 2017, 2, 477-483.	1.9	42
54	Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity, 2017, 47, 323-338.e6.	6.6	499

#	Article	IF	Citations
55	Thermoneutrality but Not UCP1 Deficiency Suppresses Monocyte Mobilization Into Blood. Circulation Research, 2017, 121, 662-676.	2.0	37
56	The Lymphatic System: Integral Roles in Immunity. Annual Review of Immunology, 2017, 35, 31-52.	9.5	244
57	CD36 Deficiency Impairs the Small Intestinal Barrier and InducesÂSubclinical Inflammation in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 82-98.	2.3	42
58	Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metabolism, 2016, 24, 158-166.	7.2	944
59	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. Journal of Experimental Medicine, 2016, 213, 2293-2314.	4.2	108
60	Trafficking patterns of mononuclear phagocytes. Nature Reviews Immunology, 2016, 16, 660-660.	10.6	0
61	MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. Journal of Experimental Medicine, 2016, 213, 1951-1959.	4.2	117
62	Homegrown Macrophages. Immunity, 2016, 45, 468-470.	6.6	8
63	<i>Mafb</i> lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. Journal of Experimental Medicine, 2016, 213, 2553-2565.	4.2	102
64	Lymphoid Aggregates Remodel Lymphatic Collecting Vessels that Serve Mesenteric Lymph Nodes in Crohn Disease. American Journal of Pathology, 2016, 186, 3066-3073.	1.9	72
65	Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nature Communications, 2016 , 7 , 11853 .	5.8	406
66	Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nature Immunology, 2016, 17, 159-168.	7.0	275
67	Homeostatic Control of Innate Lung Inflammation by Vici Syndrome Gene Epg5 and Additional Autophagy Genes Promotes Influenza Pathogenesis. Cell Host and Microbe, 2016, 19, 102-113.	5.1	83
68	PET/CT Imaging of Chemokine Receptors in Inflammatory Atherosclerosis Using Targeted Nanoparticles. Journal of Nuclear Medicine, 2016, 57, 1124-1129.	2.8	50
69	CCR7: Unifying Disparate Journeys to the Lymph Node. Journal of Immunology, 2016, 196, 3-4.	0.4	8
70	Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 614-626.	2.5	137
71	CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. Journal of Clinical Investigation, 2016, 126, 1581-1591.	3.9	72
72	Defensin-chemokine heteromeric complexes derived from heterocellular activation—a possible target to inhibit CCL5 in cardiovascular settings. Annals of Translational Medicine, 2016, 4, 497-497.	0.7	1

#	Article	IF	Citations
73	NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1 \hat{l} ±/G-CSF axis. Blood, 2015, 126, 2724-2733.	0.6	36
74	Macrophages Subvert Adaptive Immunity to Urinary Tract Infection. PLoS Pathogens, 2015, 11, e1005044.	2.1	101
75	The role of the lymphatic system in cholesterol transport. Frontiers in Pharmacology, 2015, 6, 182.	1.6	58
76	KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nature Medicine, 2015, 21, 628-637.	15.2	869
77	IL-4–Secreting Secondary T Follicular Helper (Tfh) Cells Arise from Memory T Cells, Not Persisting Tfh Cells, through a B Cell–Dependent Mechanism. Journal of Immunology, 2015, 194, 2999-3010.	0.4	45
78	Macrophage Supply and Demand at the Core of the Necrotic Granuloma. Cell Host and Microbe, 2015, 18, 3-4.	5.1	4
79	Imaging Systemic Inflammatory Networks in Ischemic Heart Disease. Journal of the American College of Cardiology, 2015, 65, 1583-1591.	1.2	64
80	Collecting Lymphatic Vessel Permeability Facilitates Adipose Tissue Inflammation and Distribution of Antigen to Lymph Node–Homing Adipose Tissue Dendritic Cells. Journal of Immunology, 2015, 194, 5200-5210.	0.4	102
81	Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology, 2015, 62, 279-291.	3.6	304
82	Microbiota-Dependent Sequelae of Acute Infection Compromise Tissue-Specific Immunity. Cell, 2015, 163, 354-366.	13.5	230
83	The pancreas anatomy conditions the origin and properties of resident macrophages. Journal of Experimental Medicine, 2015, 212, 1497-1512.	4.2	235
84	Ly6Chi Monocyte Recruitment Is Responsible for Th2 Associated Host-Protective Macrophage Accumulation in Liver Inflammation due to Schistosomiasis. PLoS Pathogens, 2014, 10, e1004282.	2.1	81
85	A macrophage revolution—and beyond. Immunological Reviews, 2014, 262, 5-8.	2.8	5
86	Photoacoustic lymphatic imaging with high spatial-temporal resolution. Journal of Biomedical Optics, 2014, 19, 1.	1.4	31
87	Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity, 2014, 40, 91-104.	6.6	1,120
88	Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16029-16034.	3.3	576
89	Mechanisms That Regulate Macrophage Burden in Atherosclerosis. Circulation Research, 2014, 114, 1757-1771.	2.0	223
90	Origin and Functions of Tissue Macrophages. Immunity, 2014, 41, 21-35.	6.6	1,191

#	Article	IF	CITATIONS
91	Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. Journal of Experimental Medicine, 2014, 211, 1525-1531.	4.2	159
92	A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature Communications, 2014, 5, 3065.	5.8	336
93	Lymphatic transport of high-density lipoproteins and chylomicrons. Journal of Clinical Investigation, 2014, 124, 929-935.	3.9	160
94	Proliferating macrophages prevail in atherosclerosis. Nature Medicine, 2013, 19, 1094-1095.	15.2	45
95	Dendritic Cell Migration Through the Lymphatic Vasculature to Lymph Nodes. Advances in Immunology, 2013, 120, 51-68.	1.1	95
96	Minimal Differentiation of Classical Monocytes as They Survey Steady-State Tissues and Transport Antigen to Lymph Nodes. Immunity, 2013, 39, 599-610.	6.6	656
97	The transcriptional landscape of $\hat{l}\pm\hat{l}^2$ T cell differentiation. Nature Immunology, 2013, 14, 619-632.	7.0	256
98	Identification of transcriptional regulators in the mouse immune system. Nature Immunology, 2013, 14, 633-643.	7.0	179
99	Normal Dendritic Cell Mobilization to Lymph Nodes under Conditions of Severe Lymphatic Hypoplasia. Journal of Immunology, 2013, 190, 4608-4620.	0.4	53
100	Local apoptosis mediates clearance of macrophages from resolving inflammation in mice. Blood, 2013, 122, 2714-2722.	0.6	136
101	Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. Journal of Clinical Investigation, 2013, 123, 1571-1579.	3.9	255
102	Monocyte Trafficking, Inflammation, and Atherosclerosis. Blood, 2013, 122, SCI-53-SCI-53.	0.6	0
103	Systemic Analysis of PPARÎ ³ in Mouse Macrophage Populations Reveals Marked Diversity in Expression with Critical Roles in Resolution of Inflammation and Airway Immunity. Journal of Immunology, 2012, 189, 2614-2624.	0.4	149
104	Impaired Humoral Immunity and Tolerance in $\langle i \rangle$ K14-VEGFR-3-lg $\langle i \rangle$ Mice That Lack Dermal Lymphatic Drainage. Journal of Immunology, 2012, 189, 2181-2190.	0.4	111
105	Quantitative Analysis of Monocyte Subpopulations in Murine Atherosclerotic Plaques by Multiphoton Microscopy. PLoS ONE, 2012, 7, e44823.	1.1	23
106	GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells. Immunity, 2012, 36, 1031-1046.	6.6	365
107	Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature Immunology, 2012, 13, 1118-1128.	7.0	1,731
108	Deciphering the transcriptional network of the dendritic cell lineage. Nature Immunology, 2012, 13, 888-899.	7.0	688

#	Article	IF	CITATIONS
109	Abstract 17: Reverse Cholesterol Transport Relies on a Functional Lymphatic Network. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	1.1	0
110	No Need to Coax Monocytes. Science, 2011, 332, 1268-1269.	6.0	25
111	CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell–associated antigen. Journal of Experimental Medicine, 2011, 208, 1789-1797.	4.2	258
112	Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoeâ€"/â€" mice during disease regression. Journal of Clinical Investigation, 2011, 121, 2025-2036.	3.9	292
113	Comparison of gene expression profiles between human and mouse monocyte subsets. Blood, 2010, 115, e10-e19.	0.6	609
114	Unravelling mononuclear phagocyte heterogeneity. Nature Reviews Immunology, 2010, 10, 453-460.	10.6	461
115	Mouse Aorta Smooth Muscle Cells Differentiate Into Lymphoid Tissue Organizer-Like Cells on Combined Tumor Necrosis Factor Receptor-1/Lymphotoxin β-Receptor NF-κB Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 395-402.	1.1	103
116	RGD peptide functionalized and reconstituted highâ€density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB Journal, 2010, 24, 1689-1699.	0.2	102
117	Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, 116, e74-e80.	0.6	2,046
118	ATP-Binding Cassette Transporters and HDL Suppress Hematopoietic Stem Cell Proliferation. Science, 2010, 328, 1689-1693.	6.0	624
119	Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. Journal of Clinical Investigation, 2010, 120, 2486-2496.	3.9	190
120	Inflamed Lymphatic Endothelium Suppresses Dendritic Cell Maturation and Function via Mac-1/ICAM-1-Dependent Mechanism. Journal of Immunology, 2009, 183, 1767-1779.	0.4	187
121	Regulation of the Migration and Survival of Monocyte Subsets by Chemokine Receptors and Its Relevance to Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1412-1418.	1.1	189
122	Lymphotoxin \hat{l}^2 receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged <i>ApoE</i> \hat{l}^2 mice. Journal of Experimental Medicine, 2009, 206, 233-248.	4.2	331
123	Origin of the Lamina Propria Dendritic Cell Network. Immunity, 2009, 31, 513-525.	6.6	758
124	In Vivo Analysis of Dendritic Cell Development and Homeostasis. Science, 2009, 324, 392-397.	6.0	764
125	Hypercholesterolemic Mice Exhibit Lymphatic Vessel Dysfunction and Degeneration. American Journal of Pathology, 2009, 175, 1328-1337.	1.9	136
126	ACTIVE REGULATION OF LIPID TRANSPORT AND METABOLISM BY LYMPHATICS: COMPLIMENTARY IN VIVO AND IN VITRO STUDIES. FASEB Journal, 2009, 23, 813.2.	0.2	0

#	Article	IF	CITATIONS
127	Biomechanical Modeling of Atherosclerotic Lesions in ApoE Deficient Mice. , 2009, , .		O
128	Antigen presentation by monocytes and monocyte-derived cells. Current Opinion in Immunology, 2008, 20, 52-60.	2.4	188
129	Migration of Dendritic Cell Subsets and their Precursors. Annual Review of Immunology, 2008, 26, 293-316.	9.5	412
130	Optimization of methods to study pulmonary dendritic cell migration reveals distinct capacities of DC subsets to acquire soluble versus particulate antigen. Journal of Immunological Methods, 2008, 337, 121-131.	0.6	88
131	Blood Monocyte Subsets Differentially Give Rise to CD103+ and CD103â [^] Pulmonary Dendritic Cell Populations. Journal of Immunology, 2008, 180, 3019-3027.	0.4	208
132	Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. Journal of Experimental Medicine, 2008, 205, 2839-2850.	4.2	191
133	Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis. Current Opinion in Lipidology, 2008, 19, 462-468.	1.2	109
134	Knockdown of CCR7 or Its Ligands Causes a Loss of Central Nervous System Involvement in Notch1 Induced T-ALL. Blood, 2008, 112, 199-199.	0.6	4
135	Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. Journal of Experimental Medicine, 2007, 204, 3133-3146.	4.2	378
136	Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. Journal of Clinical Investigation, 2007, 117, 185-194.	3.9	1,117
137	Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnology, 2007, 25, 1159-1164.	9.4	1,142
138	Autologous Chemotaxis as a Mechanism of Tumor Cell Homing to Lymphatics via Interstitial Flow and Autocrine CCR7 Signaling. Cancer Cell, 2007, 11, 526-538.	7.7	483
139	Inflammation, Lymphatic Function, And Dendritic Cell Migration. Lymphatic Research and Biology, 2006, 4, 217-228.	0.5	107
140	Migratory fate and differentiation of blood monocyte subsets. Immunobiology, 2006, 211, 609-618.	0.8	452
141	B Cell-Driven Lymphangiogenesis in Inflamed Lymph Nodes Enhances Dendritic Cell Mobilization. Immunity, 2006, 24, 203-215.	6.6	395
142	Human 6-Sulfo LacNAc-Expressing Dendritic Cells Are Principal Producers of Early Interleukin-12 and Are Controlled by Erythrocytes. Immunity, 2006, 24, 767-777.	6.6	178
143	Migratory Dendritic Cells: Sometimes Simply Ferries?. Immunity, 2006, 25, 15-18.	6.6	19
144	Langerhans cells arise from monocytes in vivo. Nature Immunology, 2006, 7, 265-273.	7.0	627

#	Article	IF	CITATIONS
145	Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunology, 2006, 7, 652-662.	7.0	589
146	Modulation of Dendritic Cell Trafficking to and from the Airways. Journal of Immunology, 2006, 176, 3578-3584.	0.4	234
147	Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3781-3786.	3.3	313
148	Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. Journal of Experimental Medicine, 2006, 203, 583-597.	4.2	235
149	Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature Reviews Immunology, 2005, 5, 617-628.	10.6	989
150	Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Seminars in Immunopathology, 2005, 26, 273-287.	4.0	115
151	Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11779-11784.	3. 3	467
152	The fibroblast: Sentinel cell and local immune modulator in tumor tissue. International Journal of Cancer, 2004, 108, 173-180.	2.3	163
153	Role of CCR8 and Other Chemokine Pathways in the Migration of Monocyte-derived Dendritic Cells to Lymph Nodes. Journal of Experimental Medicine, 2004, 200, 1231-1241.	4.2	266
154	Dyslipidemia Associated with Atherosclerotic Disease Systemically Alters Dendritic Cell Mobilization. Immunity, 2004, 21, 561-574.	6.6	254
155	Lipopolysaccharide or Whole Bacteria Block the Conversion of Inflammatory Monocytes into Dendritic Cells In Vivo. Journal of Experimental Medicine, 2003, 198, 1253-1263.	4.2	107
156	FTY720 stimulates multidrug transporter– and cysteinyl leukotriene–dependent T cell chemotaxis to lymph nodes. Journal of Clinical Investigation, 2003, 111, 627-637.	3.9	114
157	Is Maturation Required for Langerhans Cell Migration?. Journal of Experimental Medicine, 2002, 196, 413-416.	4.2	45
158	The CD16+ (FcÎ3RIII+) Subset of Human Monocytes Preferentially Becomes Migratory Dendritic Cells in a Model Tissue Setting. Journal of Experimental Medicine, 2002, 196, 517-527.	4.2	337
159	Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Seminars in Immunology, 2001, 13, 267-274.	2.7	185
160	The Leukotriene C4 Transporter MRP1 Regulates CCL19 (MIP-3β, ELC)–Dependent Mobilization of Dendritic Cells to Lymph Nodes. Cell, 2000, 103, 757-768.	13.5	450
161	Differentiation of Phagocytic Monocytes into Lymph Node Dendritic Cells In Vivo. Immunity, 1999, 11, 753-761.	6.6	826
162	Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. Journal of Leukocyte Biology, 1999, 66, 698-704.	1.5	171