
Woo Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1937458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Necessity of submonolayer LiF anode interlayers for improved device performance in blue phosphorescent OLEDs. Journal of Materials Science: Materials in Electronics, 2021, 32, 1161-1177.	2.2	8
2	Effects of MEH-PPV Molecular Ordering in the Emitting Layer on the Luminescence Efficiency of Organic Light-Emitting Diodes. Molecules, 2021, 26, 2512.	3.8	3
3	Improved hole injection for blue phosphorescent organic light-emitting diodes using solution deposited tin oxide nano-particles decorated ITO anodes. Scientific Reports, 2019, 9, 2411.	3.3	24
4	Quantitative Analysis of Charge Distribution in Bi-Emissive layer White Organic Light-Emitting Diodes with Two Fluorescent Dopants. Scientific Reports, 2018, 8, 3172.	3.3	5
5	White Organic Lightâ€Emitting Diodes Using Exciplex Emission with Multiple Emitting Layers. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700530.	1.8	7
6	Study on hybrid blue organic light emitting diodes with step controlled doping profiles in phosphorescent emitting layer. Optical Materials, 2018, 86, 498-504.	3.6	1
7	Pâ€176: Degradation of Blue Phosphorescent and Fluorescent Organic Lightâ€Emitting Diodes with Thermal Stress. Digest of Technical Papers SID International Symposium, 2017, 48, 1936-1939.	0.3	0
8	Quenching in single emissive white phosphorescent organic light-emitting devices. Organic Electronics, 2016, 38, 230-237.	2.6	7
9	Confinement of holes and electrons in blue organic light-emitting diodes with additional red emissive layers. Optical Materials, 2016, 52, 181-185.	3.6	4
10	Fluorescent and Phosphorescent Emitting Layers by Utilizing a Triplet Harvesting in Hybrid White Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2016, 16, 11783-11787.	0.9	0
11	Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers. Optical Materials, 2015, 47, 78-82.	3.6	10
12	Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer. Journal of Luminescence, 2015, 160, 346-350.	3.1	16
13	Efficient charge balance in blue phosphorescent organic light emitting diodes by two types of mixed layer. Thin Solid Films, 2015, 587, 61-65.	1.8	4
14	Study of triplet exciton's energy transfer in white phosphorescent organic light-emitting diodes with multi-doped single emissive layer. Optical Materials, 2015, 40, 57-62.	3.6	5
15	Efficiency enhancement of blue phosphorescent organic light-emitting diodes using mixed electron transport layer. Optical Materials, 2015, 39, 21-25.	3.6	8
16	Pâ€156: Blue Phosphorescence OLED with Interfacial Mixed Layer between EML and ETL. Digest of Technical Papers SID International Symposium, 2014, 45, 1568-1570.	0.3	0
17	Effect of interfacial mixed layer in blue phosphorescent organic light-emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2541-2545.	1.8	3
18	Pâ€143: Realization of High Efficiency Green Phosphorescent Topâ€emitting Organic Lightâ€emitting Diodes by Employing Ultrathin Nonâ€doped Emissive Layer. Digest of Technical Papers SID International Symposium, 2014, 45, 1522-1525.	0.3	0

Woo Young Kim

#	Article	IF	CITATIONS
19	Pâ€159: Triplet Exciton Confinement in White Phosphorescent Organic Lightâ€Emitting Diodes with Multiâ€Doped Single Emissive Layer. Digest of Technical Papers SID International Symposium, 2014, 45, 1577-1580.	0.3	0
20	Highly efficient blue organic light-emitting diodes using quantum well-like multiple emissive layer structure. Nanoscale Research Letters, 2014, 9, 191.	5.7	11
21	Solution Process of Encapsulation Layer for Organic Light Emitting Diode for Enhanced Performance. Molecular Crystals and Liquid Crystals, 2014, 601, 231-236.	0.9	1
22	Luminescence characteristics of hybrid dual emitting layers in blue organic light-emitting diodes by controlling the fluorescent doping concentration. Journal of Luminescence, 2014, 148, 72-78.	3.1	12
23	Luminescence of Rubrene and DCJTB molecules in organic light-emitting devices. Journal of Luminescence, 2014, 146, 314-320.	3.1	15
24	Enhancement of external quantum efficiency and reduction of roll-off in blue phosphorescent organic light emitt diodes using TCTA inter-layer. Optical Materials, 2014, 37, 120-124.	3.6	7
25	Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer. Scientific Reports, 2014, 4, 7009.	3.3	38
26	Color optimization of single emissive white OLEDs via energy transfer between RGB fluorescent dopants. Journal of Luminescence, 2013, 143, 723-728.	3.1	30
27	Soluble N-Type organic thin-film transistors with enhanced electrical characteristics. Electronic Materials Letters, 2013, 9, 865-869.	2.2	6
28	High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants. Applied Physics Letters, 2013, 103, .	3.3	12
29	Highly efficient blue organic light-emitting diodes using DPASN quantum well structure. Materials Research Society Symposia Proceedings, 2013, 1567, 1.	0.1	0
30	High Efficiency Blue Organic Light Emitting Devices doped by BCzVBi in Hole and Electron Transport Layer. Materials Research Society Symposia Proceedings, 2013, 1567, 1.	0.1	5
31	Characterization of Hybrid Dual Emitting Layers in Blue Organic Light-Emitting Diodes by Controlling the Fluorescent Doping Concentration. Materials Research Society Symposia Proceedings, 2013, 1567, 1.	0.1	0
32	Enhanced life time and suppressed efficiency roll-off in phosphorescent organic light-emitting diodes with multiple quantum well structures. AIP Advances, 2012, 2, .	1.3	16
33	Spectroscopic study of white organic light-emitting devices with various thicknesses of emissive layer. Journal of Applied Physics, 2012, 111, 014507.	2.5	9
34	Energy transfer between host and dopant molecules in blue organic light-emitting devices. Journal of Applied Physics, 2011, 110, .	2.5	22
35	High contrast green OLEDs using inorganic metal multi layer. Synthetic Metals, 2011, 161, 2211-2214.	3.9	7
36	Three Primary-Colored WOLED Using MADN as Host Material. Nanoscience and Nanotechnology Letters, 2011, 3, 131-135.	0.4	4

#	Article	IF	CITATIONS
37	Destructive Optical Interference of Ambient Light for High Contrast Organic Light-Emitting Diode Using Inorganic Metal Multi-Layer. Molecular Crystals and Liquid Crystals, 2010, 531, 7/[307]-13/[313].	0.9	Ο
38	Fabrication of White Organic Light-Emitting Diodes Using Two Complementary Color Methods. Molecular Crystals and Liquid Crystals, 2009, 510, 282/[1416]-292/[1426].	0.9	0
39	Polarity Effects of Dielectric Anisotropy on the Electro-Optical Characteristics of Fringe Field Twisted Nematic Mode. Electronic Materials Letters, 2009, 5, 179-182.	2.2	1
40	P-178: A 1.52-in. Full-Color Passive-Matrix OLED with Nitrogen Plasma Treatments. Digest of Technical Papers SID International Symposium, 2006, 37, 898.	0.3	0