
Annunziatina Laurino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1936345/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Exploring the human cerebral cortex using confocal microscopy. Progress in Biophysics and Molecular Biology, 2022, 168, 3-9.	2.9	8
2	Redox Properties of 3-lodothyronamine (T1AM) and 3-lodothyroacetic Acid (TA1). International Journal of Molecular Sciences, 2022, 23, 2718.	4.1	2
3	3D molecular phenotyping of cleared human brain tissues with light-sheet fluorescence microscopy. Communications Biology, 2022, 5, 447.	4.4	18
4	Commentary: Euthyroid Sick Syndrome in Patients With COVID-19. Frontiers in Endocrinology, 2021, 12, 633097.	3.5	4
5	D-Tagatose Feeding Reduces the Risk of Sugar-Induced Exacerbation of Myocardial I/R Injury When Compared to Its Isomer Fructose. Frontiers in Molecular Biosciences, 2021, 8, 650962.	3.5	1
6	Large-scale, cell-resolution volumetric mapping allows layer-specific investigation of human brain cytoarchitecture. Biomedical Optics Express, 2021, 12, 3684.	2.9	18
7	The 3-iodothyronamine (T1AM) and the 3-iodothyroacetic acid (TA1) indicate a novel connection with the histamine system for neuroprotection. European Journal of Pharmacology, 2021, 912, 174606.	3.5	5
8	3-lodothyronamine Affects Thermogenic Substrates' Mobilization in Brown Adipocytes. Biology, 2020, 9, 95.	2.8	5
9	Fast volumetric mapping of human brain slices. , 2020, , .		2
10	Fast volumetric mapping of human brain slices. , 2020, , .		1
11	Angiotensin-II Drives Human Satellite Cells Toward Hypertrophy and Myofibroblast Trans-Differentiation by Two Independent Pathways. International Journal of Molecular Sciences, 2019, 20, 4912.	4.1	11
12	Brain Histamine Modulates the Antidepressant-Like Effect of the 3-lodothyroacetic Acid (TA1). Frontiers in Cellular Neuroscience, 2019, 13, 176.	3.7	3
13	N-(3-Ethoxy-phenyl)-4-pyrrolidin-1-yl-3-trifluoromethyl-benzamide (EPPTB) prevents 3-iodothyronamine (T1AM)-induced neuroprotection against kainic acid toxicity. Neurochemistry International, 2019, 129, 104460.	3.8	12
14	Thyroid Hormone, Thyroid Hormone Metabolites and Mast Cells: A Less Explored Issue. Frontiers in Cellular Neuroscience, 2019, 13, 79.	3.7	18
15	Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector. Journal of Biomedical Optics, 2019, 24, 1.	2.6	22
16	Three-dimensional analysis of human brain cytoarchitectonics by means of a SWITCH/TDE-combined clearing method. , 2019, , .		0
17	Selective HCN1 block as a strategy to control oxaliplatin-induced neuropathy. Neuropharmacology, 2018, 131, 403-413.	4.1	58
18	3-lodothyroacetic acid (TA 1), a by-product of thyroid hormone metabolism, reduces the hypnotic effect of ethanol without interacting at GABA-A receptors. Neurochemistry International, 2018, 115, 31-36.	3.8	7

Annunziatina Laurino

#	Article	IF	CITATIONS
19	Selective Blockade of HCN1/HCN2 Channels as a Potential Pharmacological Strategy Against Pain. Frontiers in Pharmacology, 2018, 9, 1252.	3.5	40
20	Commentary: 3-lodothyronamine Reduces Insulin Secretion In Vitro via a Mitochondrial Mechanism. Frontiers in Endocrinology, 2018, 9, 57.	3.5	2
21	Central Effects of 3-lodothyronamine Reveal a Novel Role for Mitochondrial Monoamine Oxidases. Frontiers in Endocrinology, 2018, 9, 290.	3.5	15
22	Anticonvulsant and Neuroprotective Effects of the Thyroid Hormone Metabolite 3-lodothyroacetic Acid. Thyroid, 2018, 28, 1387-1397.	4.5	18
23	Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2017, 10, .	3.9	76
24	2-Arylazetidines as ligands for nicotinic acetylcholine receptors. Chemistry of Heterocyclic Compounds, 2017, 53, 329-334.	1.2	5
25	Pathogenesis of Hypertrophic Cardiomyopathy is Mutation Rather Than Disease Specific: A Comparison of the Cardiac Troponin T E163R and R92Q Mouse Models. Journal of the American Heart Association, 2017, 6, .	3.7	51
26	New Insights into the Potential Roles of 3-lodothyronamine (T1AM) and Newly Developed Thyronamine-Like TAAR1 Agonists in Neuroprotection. Frontiers in Pharmacology, 2017, 8, 905.	3.5	34
27	Commentary: Torpor: The Rise and Fall of 3-Monoiodothyronamine from Brain to Gut—From Gut to Brain?. Frontiers in Endocrinology, 2017, 8, 206.	3.5	4
28	The impact of scopolamine pretreatment on 3-iodothyronamine (T1AM) effects on memory and pain in mice. Hormones and Behavior, 2017, 94, 93-96.	2.1	14
29	Kynurenic acid and zaprinast induce analgesia by modulating HCN channels through GPR35 activation. Neuropharmacology, 2016, 108, 136-143.	4.1	56
30	Hit-to-Lead Optimization of Mouse Trace Amine Associated Receptor 1 (mTAAR1) Agonists with a Diphenylmethane-Scaffold: Design, Synthesis, and Biological Study. Journal of Medicinal Chemistry, 2016, 59, 9825-9836.	6.4	19
31	3-iodothyronamine (T1AM), a novel antagonist of muscarinic receptors. European Journal of Pharmacology, 2016, 793, 35-42.	3.5	22
32	Design, Synthesis, and Evaluation of Thyronamine Analogues as Novel Potent Mouse Trace Amine Associated Receptor 1 (<i>m</i> TAAR1) Agonists. Journal of Medicinal Chemistry, 2015, 58, 5096-5107.	6.4	42
33	The pro-healing effect of exendin-4 on wounds produced by abrasion in normoglycemic mice. European Journal of Pharmacology, 2015, 764, 346-352.	3.5	18
34	In the brain of mice, 3-iodothyronamine (T1AM) is converted into 3-iodothyroacetic acid (TA1) and it is included within the signaling network connecting thyroid hormone metabolites with histamine. European Journal of Pharmacology, 2015, 761, 130-134.	3.5	38
35	3â€iodothyroacetic acid, a metabolite of thyroid hormone, induces itch and reduces threshold to noxious and to painful heat stimuli in mice. British Journal of Pharmacology, 2015, 172, 1859-1868.	5.4	19
36	Pharmacological perspectives in sarcopenia: a potential role for renin-angiotensin system blockers?. Clinical Cases in Mineral and Bone Metabolism, 2015, 12, 135-8.	1.0	23