Maria Deloria Knoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1936269/publications.pdf

Version: 2024-02-01

90 papers 7,059 citations

34 h-index 79 g-index

94 all docs

94 docs citations

94 times ranked 8235 citing authors

#	Article	IF	CITATIONS
1	Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet, The, 2022, 399, 924-944.	13.7	752
2	Binding and neutralizing antibody responses to SARS-CoV-2 in very young children exceed those in adults. JCI Insight, 2022, 7, .	5.0	16
3	National, regional, and provincial disease burden attributed to Streptococcus pneumoniae and Haemophilus influenzae type b in children in China: Modelled estimates for 2010–17. The Lancet Regional Health - Western Pacific, 2022, 22, 100430.	2.9	21
4	A Systematic Review of Coronavirus Disease 2019 Vaccine Efficacy and Effectiveness Against Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Disease. Open Forum Infectious Diseases, 2022, 9, .	0.9	62
5	Assessing the Reliability of SARS-CoV-2 Neutralization Studies That Use Post-Vaccination Sera. Vaccines, 2022, 10, 850.	4.4	5
6	A global agenda for older adult immunization in the COVID-19 era: A roadmap for action. Vaccine, 2021, 39, 5240-5250.	3.8	52
7	The Etiology of Pneumonia From Analysis of Lung Aspirate and Pleural Fluid Samples: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2021, 73, e3788-e3796.	5.8	14
8	Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet, The, 2021, 397, 72-74.	13.7	540
9	An Immunocompetent Patient with High Neutralizing Antibody Titers Who Shed COVID-19 Virus for 169 days — China, 2020. China CDC Weekly, 2021, 3, 688-691.	2.3	9
10	The Global Burden of Meningitis in Children: Challenges with Interpreting Global Health Estimates. Microorganisms, 2021, 9, 377.	3.6	20
11	Situational assessment of adult vaccine preventable disease and the potential for immunization advocacy and policy in low- and middle-income countries. Vaccine, 2021, 39, 1556-1564.	3.8	26
12	Changes in Invasive Pneumococcal Disease Caused by Streptococcus pneumoniae Serotype 1 following Introduction of PCV10 and PCV13: Findings from the PSERENADE Project. Microorganisms, 2021, 9, 696.	3.6	10
13	Serotype Distribution of Remaining Pneumococcal Meningitis in the Mature PCV10/13 Period: Findings from the PSERENADE Project. Microorganisms, 2021, 9, 738.	3.6	31
14	Upper Respiratory Tract Co-detection of Human Endemic Coronaviruses and High-density Pneumococcus Associated With Increased Severity Among HIV-Uninfected Children Under 5 Years Old in the PERCH Study. Pediatric Infectious Disease Journal, 2021, 40, 503-512.	2.0	5
15	Willingness to pay and financing preferences for COVID-19 vaccination in China. Vaccine, 2021, 39, 1968-1976.	3.8	48
16	Global Landscape Review of Serotype-Specific Invasive Pneumococcal Disease Surveillance among Countries Using PCV10/13: The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) Project. Microorganisms, 2021, 9, 742.	3.6	30
17	An affordable pneumococcal conjugate vaccine after 20 years. Lancet Infectious Diseases, The, 2021, 21, 751-753.	9.1	3
18	Epidemiology of the Rhinovirus (RV) in African and Southeast Asian Children: A Case-Control Pneumonia Etiology Study. Viruses, 2021, 13, 1249.	3.3	9

#	Article	IF	Citations
19	Deep learning for classification of pediatric chest radiographs by WHO's standardized methodology. PLoS ONE, 2021, 16, e0253239.	2.5	10
20	The Etiology of Pneumonia in HIV-1-infected South African Children in the Era of Antiretroviral Treatment. Pediatric Infectious Disease Journal, 2021, 40, S69-S78.	2.0	6
21	The Etiology of Pneumonia in Zambian Children. Pediatric Infectious Disease Journal, 2021, 40, S40-S49.	2.0	10
22	The Etiology of Childhood Pneumonia in Bangladesh. Pediatric Infectious Disease Journal, 2021, 40, S79-S90.	2.0	8
23	The Etiology of Pneumonia in HIV-uninfected South African Children. Pediatric Infectious Disease Journal, 2021, 40, S59-S68.	2.0	10
24	The Etiology of Childhood Pneumonia in The Gambia. Pediatric Infectious Disease Journal, 2021, 40, S7-S17.	2.0	12
25	The Etiology of Pneumonia in HIV-uninfected Children in Kilifi, Kenya. Pediatric Infectious Disease Journal, 2021, 40, S29-S39.	2.0	9
26	The Etiology of Childhood Pneumonia in Mali. Pediatric Infectious Disease Journal, 2021, 40, S18-S28.	2.0	13
27	Introduction to the Site-specific Etiologic Results From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatric Infectious Disease Journal, 2021, 40, S1-S6.	2.0	4
28	The Etiology of Pneumonia in HIV-infected Zambian Children. Pediatric Infectious Disease Journal, 2021, 40, S50-S58.	2.0	12
29	National and provincial impact and cost-effectiveness of Haemophilus influenzae type b conjugate vaccine in China: a modeling analysis. BMC Medicine, 2021, 19, 181.	5.5	12
30	1173. Changes in Invasive Pneumococcal Disease Incidence Following Introduction of PCV10 and PCV13 Among Children < 5 Years: The PSERENADE Project. Open Forum Infectious Diseases, 2021, 8, S677-S678.	0.9	0
31	1180. Comparing Changes in Pneumococcal Meningitis Incidence to all Invasive Pneumococcal Disease Following Introduction of PCV10 and PCV13: The PSERENADE Project. Open Forum Infectious Diseases, 2021, 8, S682-S683.	0.9	0
32	1181. Serotype Distribution by Age of Remaining Invasive Pneumococcal Disease After Long-Term PCV10/13 Use: The PSERENADE Project. Open Forum Infectious Diseases, 2021, 8, S683-S684.	0.9	7
33	Acceptance of COVID-19 Vaccination during the COVID-19 Pandemic in China. Vaccines, 2020, 8, 482.	4.4	666
34	Digital auscultation in PERCH: Associations with chest radiography and pneumonia mortality in children. Pediatric Pulmonology, 2020, 55, 3197-3208.	2.0	13
35	National, regional, and state-level pneumonia and severe pneumonia morbidity in children in India: modelled estimates for 2000 and 2015. The Lancet Child and Adolescent Health, 2020, 4, 678-687.	5.6	17
36	Use of seasonal influenza and pneumococcal polysaccharide vaccines in older adults to reduce COVID-19 mortality. Vaccine, 2020, 38, 5398-5401.	3.8	64

#	Article	IF	Citations
37	Pneumococcal colonization prevalence and density among Thai children with severe pneumonia and community controls. PLoS ONE, 2020, 15, e0232151.	2.5	19
38	Title is missing!. , 2020, 15, e0232151.		0
39	Title is missing!. , 2020, 15, e0232151.		0
40	Title is missing!. , 2020, 15, e0232151.		0
41	Title is missing!. , 2020, 15, e0232151.		0
42	Title is missing!. , 2020, 15, e0232151.		0
43	Title is missing!. , 2020, 15, e0232151.		0
44	Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet, The, 2019, 394, 757-779.	13.7	569
45	National, regional, and state-level burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in India: modelled estimates for 2000–15. The Lancet Global Health, 2019, 7, e735-e747.	6.3	31
46	Effect of ten-valent pneumococcal conjugate vaccine on invasive pneumococcal disease and nasopharyngeal carriage in Kenya: a longitudinal surveillance study. Lancet, The, 2019, 393, 2146-2154.	13.7	111
47	Effect of 10-valent pneumococcal conjugate vaccine on the incidence of radiologically-confirmed pneumonia and clinically-defined pneumonia in Kenyan children: an interrupted time-series analysis. The Lancet Global Health, 2019, 7, e337-e346.	6.3	41
48	Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. The Lancet Global Health, 2018, 6, e744-e757.	6.3	736
49	Chest Radiograph Findings in Childhood Pneumonia Cases From the Multisite PERCH Study. Clinical Infectious Diseases, 2017, 64, S262-S270.	5.8	56
50	Density of Upper Respiratory Colonization With Streptococcus pneumoniae and Its Role in the Diagnosis of Pneumococcal Pneumonia Among Children Aged <5 Years in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S317-S327.	5.8	96
51	Invasive pneumococcal disease in children aged younger than 5 years in India: a surveillance study. Lancet Infectious Diseases, The, 2017, 17, 305-312.	9.1	51
52	The Incremental Value of Repeated Induced Sputum and Gastric Aspirate Samples for the Diagnosis of Pulmonary Tuberculosis in Young Children With Acute Community-Acquired Pneumonia. Clinical Infectious Diseases, 2017, 64, S309-S316.	5.8	21
53	The Diagnostic Utility of Induced Sputum Microscopy and Culture in Childhood Pneumonia. Clinical Infectious Diseases, 2017, 64, S280-S288.	5.8	29
54	Detection of Pneumococcal DNA in Blood by Polymerase Chain Reaction for Diagnosing Pneumococcal Pneumonia in Young Children From Low- and Middle-Income Countries. Clinical Infectious Diseases, 2017, 64, S347-S356.	5.8	37

#	Article	IF	CITATIONS
55	Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data. Clinical Infectious Diseases, 2017, 64, S197-S204.	5.8	28
56	Introduction to the Epidemiologic Considerations, Analytic Methods, and Foundational Results From the Pneumonia Etiology Research for Child Health Study. Clinical Infectious Diseases, 2017, 64, S179-S184.	5.8	19
57	Standardized Interpretation of Chest Radiographs in Cases of Pediatric Pneumonia From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S253-S261.	5.8	62
58	Colonization Density of the Upper Respiratory Tract as a Predictor of Pneumonia—Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Clinical Infectious Diseases, 2017, 64, S328-S336.	5.8	49
59	Is Higher Viral Load in the Upper Respiratory Tract Associated With Severe Pneumonia? Findings From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S337-S346.	5.8	81
60	The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children With Pneumonia. Clinical Infectious Diseases, 2017, 64, S368-S377.	5.8	70
61	Microscopic Analysis and Quality Assessment of Induced Sputum From Children With Pneumonia in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S271-S279.	5.8	32
62	Limited Utility of Polymerase Chain Reaction in Induced Sputum Specimens for Determining the Causes of Childhood Pneumonia in Resource-Poor Settings: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2017, 64, S289-S300.	5.8	31
63	Association of C-Reactive Protein With Bacterial and Respiratory Syncytial Virus–Associated Pneumonia Among Children Aged <5 Years in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S378-S386.	5.8	84
64	Should Controls With Respiratory Symptoms Be Excluded From Case-Control Studies of Pneumonia Etiology? Reflections From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S205-S212.	5.8	25
65	Standardization of Clinical Assessment and Sample Collection Across All PERCH Study Sites. Clinical Infectious Diseases, 2017, 64, S228-S237.	5.8	27
66	Evaluation of Pneumococcal Load in Blood by Polymerase Chain Reaction for the Diagnosis of Pneumococcal Pneumonia in Young Children in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S357-S367.	5.8	30
67	Bayesian Estimation of Pneumonia Etiology: Epidemiologic Considerations and Applications to the Pneumonia Etiology Research for Child Health Study. Clinical Infectious Diseases, 2017, 64, S213-S227.	5.8	37
68	Standardization of Laboratory Methods for the PERCH Study. Clinical Infectious Diseases, 2017, 64, S245-S252.	5.8	48
69	Data Management and Data Quality in PERCH, a Large International Case-Control Study of Severe Childhood Pneumonia. Clinical Infectious Diseases, 2017, 64, S238-S244.	5.8	13
70	Safety of Induced Sputum Collection in Children Hospitalized With Severe or Very Severe Pneumonia. Clinical Infectious Diseases, 2017, 64, S301-S308.	5.8	17
71	Enhanced Diagnosis of Pneumococcal Bacteremia Using Antigen- and Molecular-Based Tools on Blood Specimens in Mali and Thailand: A Prospective Surveillance Study. American Journal of Tropical Medicine and Hygiene, 2016, 94, 267-275.	1.4	5
72	Pertussis-Associated Pneumonia in Infants and Children From Low- and Middle-Income Countries Participating in the PERCH Study. Clinical Infectious Diseases, 2016, 63, S187-S196.	5.8	38

#	Article	IF	CITATIONS
73	Systematic Review of the Indirect Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Pneumococcal Disease and Colonization. Pediatric Infectious Disease Journal, 2014, 33, S161-S171.	2.0	88
74	Methods for a Systematic Review of Pneumococcal Conjugate Vaccine Dosing Schedules. Pediatric Infectious Disease Journal, 2014, 33, S182-S187.	2.0	10
75	Systematic Review of the Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Prevention of Pneumonia. Pediatric Infectious Disease Journal, 2014, 33, S140-S151.	2.0	83
76	Systematic Review of the Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Immunogenicity. Pediatric Infectious Disease Journal, 2014, 33, S119-S129.	2.0	53
77	Systematic Review of the Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Vaccine-type Nasopharyngeal Carriage. Pediatric Infectious Disease Journal, 2014, 33, S152-S160.	2.0	87
78	Systematic Review of the Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Vaccine-type Invasive Pneumococcal Disease Among Young Children. Pediatric Infectious Disease Journal, 2014, 33, S109-S118.	2.0	92
79	The Differential Impact of Coadministered Vaccines, Geographic Region, Vaccine Product and Other Covariates on Pneumococcal Conjugate Vaccine Immunogenicity. Pediatric Infectious Disease Journal, 2014, 33, S130-S139.	2.0	29
80	Monitoring the Introduction of Pneumococcal Conjugate Vaccines into West Africa: Design and Implementation of a Population-Based Surveillance System. PLoS Medicine, 2012, 9, e1001161.	8.4	41
81	Cost effectiveness of child pneumococcal conjugate vaccination in middle-income countries. International Health, 2011, 3, 270-281.	2.0	29
82	Global status of Haemophilus influenzae type b and pneumococcal conjugate vaccines: evidence, policies, and introductions. Current Opinion in Infectious Diseases, 2010, 23, 236-241.	3.1	47
83	A policy framework for accelerating adoption of new vaccines. Hum Vaccin, 2010, 6, 1021-1024.	2.4	37
84	Enhanced Diagnosis of Pneumococcal Meningitis with Use of the Binax NOW Immunochromatographic Test of <i>Streptococcus pneumoniae </i> Antigen: A Multisite Study. Clinical Infectious Diseases, 2009, 48, S49-S56.	5.8	78
85	Progress and Future Challenges in Coordinated Surveillance and Detection of Pneumococcal and Hib Disease in Developing Countries. Clinical Infectious Diseases, 2009, 48, S33-S36.	5.8	25
86	Standardizing Surveillance of Pneumococcal Disease. Clinical Infectious Diseases, 2009, 48, S37-S48.	5.8	28
87	Breathing New Life into Pneumonia Diagnostics. Journal of Clinical Microbiology, 2009, 47, 3405-3408.	3.9	67
88	Immune Responses and Antibody Decay after Immunization of Adolescents and Adults with an Acellular Pertussis Vaccine: The APERT Study. Journal of Infectious Diseases, 2004, 190, 535-544.	4.0	141
89	Minimizing predictability while retaining balance through the use of less restrictive randomization procedures. Statistics in Medicine, 2003, 22, 3017-3028.	1.6	207
90	Major Risk Factors as Antecedents of Fatal and Nonfatal Coronary Heart Disease Events. JAMA - Journal of the American Medical Association, 2003, 290, 891.	7.4	862