
Matthias J Schnell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1936108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood, 2001, 98, 3006-3015.	0.6	309
2	The cell biology of rabies virus: using stealth to reach the brain. Nature Reviews Microbiology, 2010, 8, 51-61.	13.6	302
3	Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11359-11365.	3.3	271
4	Rabies Virus CVS-N2c ΔG Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability. Neuron, 2016, 89, 711-724.	3.8	236
5	Construction of a Novel Virus That Targets HIV-1-Infected Cells and Controls HIV-1 Infection. Cell, 1997, 90, 849-857.	13.5	229
6	The spread and evolution of rabies virus: conquering new frontiers. Nature Reviews Microbiology, 2018, 16, 241-255.	13.6	191
7	Rhabdoviruses and the Cellular Ubiquitin-Proteasome System: a Budding Interaction. Journal of Virology, 2001, 75, 10623-10629.	1.5	185
8	Overexpression of the Rabies Virus Glycoprotein Results in Enhancement of Apoptosis and Antiviral Immune Response. Journal of Virology, 2002, 76, 3374-3381.	1.5	184
9	A Single Amino Acid Change in Rabies Virus Glycoprotein Increases Virus Spread and Enhances Virus Pathogenicity. Journal of Virology, 2005, 79, 14141-14148.	1.5	165
10	Concepts in the pathogenesis of rabies. Future Virology, 2008, 3, 481-490.	0.9	141
11	Highly stable expression of a foreign gene from rabies virus vectors Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7310-7314.	3.3	137
12	Requirement for a non-specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus. EMBO Journal, 1998, 17, 1289-1296.	3.5	137
13	Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proceedings of the United States of America, 2004, 101, 16328-16332.	3.3	130
14	Recombinant Vesicular Stomatitis Virus Expressing Respiratory Syncytial Virus (RSV) Glycoproteins: RSV Fusion Protein Can Mediate Infection and Cell Fusion. Virology, 1999, 254, 81-91.	1.1	124
15	The dynein light chain 8 binding motif of rabies virus phosphoprotein promotes efficient viral transcription. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7229-7234.	3.3	122
16	Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annual Review of Virology, 2015, 2, 451-471.	3.0	114
17	Generation of mucosal cytotoxic T cells against soluble protein by tissue-specific environmental and costimulatory signals. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10814-10819.	3.3	112
18	Reinvestigation of the role of the rabies virus glycoprotein in viral pathogenesis using a reverse genetics approach. Journal of NeuroVirology, 2000, 6, 373-381.	1.0	108

#	Article	IF	CITATIONS
19	Antibody Quality and Protection from Lethal Ebola Virus Challenge in Nonhuman Primates Immunized with Rabies Virus Based Bivalent Vaccine. PLoS Pathogens, 2013, 9, e1003389.	2.1	106
20	Polymerase Activity ofin VitroMutated Rabies Virus L Protein. Virology, 1995, 214, 522-530.	1.1	103
21	Attenuation of Rabies Virulence: Takeover by the Cytoplasmic Domain of Its Envelope Protein. Science Signaling, 2010, 3, ra5.	1.6	100
22	Second-Generation Rabies Virus-Based Vaccine Vectors Expressing Human Immunodeficiency Virus Type 1 Gag Have Greatly Reduced Pathogenicity but Are Highly Immunogenic. Journal of Virology, 2003, 77, 237-244.	1.5	96
23	Budding of PPxY-Containing Rhabdoviruses Is Not Dependent on Host Proteins TCS101 and VPS4A. Journal of Virology, 2004, 78, 2657-2665.	1.5	95
24	Rabies Virus Infection Induces Type I Interferon Production in an IPS-1 Dependent Manner While Dendritic Cell Activation Relies on IFNAR Signaling. PLoS Pathogens, 2010, 6, e1001016.	2.1	93
25	Non-neutralizing antibodies elicited by recombinant Lassa–Rabies vaccine are critical for protection against Lassa fever. Nature Communications, 2018, 9, 4223.	5.8	92
26	Small-Molecule Probes Targeting the Viral PPxY-Host Nedd4 Interface Block Egress of a Broad Range of RNA Viruses. Journal of Virology, 2014, 88, 7294-7306.	1.5	86
27	A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies. Journal of General Virology, 2005, 86, 1435-1440.	1.3	81
28	The Glycoprotein and the Matrix Protein of Rabies Virus Affect Pathogenicity by Regulating Viral Replication and Facilitating Cell-to-Cell Spread. Journal of Virology, 2008, 82, 2330-2338.	1.5	77
29	PPEY Motif within the Rabies Virus (RV) Matrix Protein Is Essential for Efficient Virion Release and RV Pathogenicity. Journal of Virology, 2008, 82, 9730-9738.	1.5	76
30	Normal Replication of Vesicular Stomatitis Virus without C Proteins. Virology, 1996, 216, 309-316.	1.1	75
31	Inactivated or Live-Attenuated Bivalent Vaccines That Confer Protection against Rabies and Ebola Viruses. Journal of Virology, 2011, 85, 10605-10616.	1.5	75
32	Human CD8+ cytotoxic T cell responses to adenovirus capsid proteins. Virology, 2006, 350, 312-322.	1.1	70
33	One-Health: a Safe, Efficient, Dual-Use Vaccine for Humans and Animals against Middle East Respiratory Syndrome Coronavirus and Rabies Virus. Journal of Virology, 2017, 91, .	1.5	69
34	Rhabdovirus-Based Vaccine Platforms against Henipaviruses. Journal of Virology, 2015, 89, 144-154.	1.5	66
35	Genetic engineering of live rabies vaccines. Vaccine, 2001, 19, 3543-3551.	1.7	65
36	Rabies Virus (RV) Glycoprotein Expression Levels Are Not Critical for Pathogenicity of RV. Journal of Virology, 2011, 85, 697-704.	1.5	64

#	Article	IF	CITATIONS
37	Live and Killed Rhabdovirus-Based Vectors as Potential Hepatitis C Vaccines. Virology, 2002, 292, 24-34.	1.1	63
38	Overexpression of Cytochrome c by a Recombinant Rabies Virus Attenuates Pathogenicity and Enhances Antiviral Immunity. Journal of Virology, 2001, 75, 10800-10807.	1.5	61
39	Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology, 2015, 479-480, 331-344.	1.1	61
40	Functional Human Immunodeficiency Virus Type 1 (HIV-1) Gag-Pol or HIV-1 Gag-Pol and Env Expressed from a Single Rhabdovirus-Based Vaccine Vector Genome. Journal of Virology, 2003, 77, 10889-10899.	1.5	60
41	Expression and Immunogenicity of Human Immunodeficiency Virus Type 1 Gag Expressed by a Replication-Competent Rhabdovirus-Based Vaccine Vector. Journal of Virology, 2001, 75, 8724-8732.	1.5	59
42	Rabies Virus-Based Vectors Expressing Human Immunodeficiency Virus Type 1 (HIV-1) Envelope Protein Induce a Strong, Cross-Reactive Cytotoxic T-Lymphocyte Response against Envelope Proteins from Different HIV-1 Isolates. Journal of Virology, 2001, 75, 4430-4434.	1.5	59
43	Dominance of a Nonpathogenic Glycoprotein Gene over a Pathogenic Glycoprotein Gene in Rabies Virus. Journal of Virology, 2007, 81, 7041-7047.	1.5	58
44	Both Viral Transcription and Replication Are Reduced when the Rabies Virus Nucleoprotein Is Not Phosphorylated. Journal of Virology, 2002, 76, 4153-4161.	1.5	53
45	New approaches to the prevention and eradication of rabies. Expert Review of Vaccines, 2003, 2, 399-406.	2.0	53
46	A recombinant rabies virus expressing vesicular stomatitis virus glycoprotein fails to protect against rabies virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14680-14685.	3.3	51
47	The rabies virus glycoprotein determines the distribution of different rabies virus strains in the brain. Journal of NeuroVirology, 2002, 8, 345-352.	1.0	51
48	Rabies Virus Is Recognized by the NLRP3 Inflammasome and Activates Interleukin-1β Release in Murine Dendritic Cells. Journal of Virology, 2013, 87, 5848-5857.	1.5	50
49	Overexpression of Tumor Necrosis Factor Alpha by a Recombinant Rabies Virus Attenuates Replication in Neurons and Prevents Lethal Infection in Mice. Journal of Virology, 2005, 79, 15405-15416.	1.5	49
50	Replicationâ€Deficient Rabies Virus–Based Vaccines Are Safe and Immunogenic in Mice and Nonhuman Primates. Journal of Infectious Diseases, 2009, 200, 1251-1260.	1.9	49
51	Preclinical Development of Inactivated Rabies Virus–Based Polyvalent Vaccine Against Rabies and Filoviruses. Journal of Infectious Diseases, 2015, 212, S414-S424.	1.9	49
52	Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nature Reviews Neuroscience, 2016, 17, 766-776.	4.9	49
53	Interferon-β expressed by a rabies virus-based HIV-1 vaccine vector serves as a molecular adjuvant and decreases pathogenicity. Virology, 2008, 382, 226-238.	1.1	48
54	Guanylyl Cyclase C–Induced Immunotherapeutic Responses Opposing Tumor Metastases Without Autoimmunity. Journal of the National Cancer Institute, 2008, 100, 950-961.	3.0	48

#	Article	IF	CITATIONS
55	Immune modulating effect by a phosphoprotein-deleted rabies virus vaccine vector expressing two copies of the rabies virus glycoprotein gene. Vaccine, 2008, 26, 6405-6414.	1.7	46
56	Interferon Response and Viral Evasion by Members of the Family Rhabdoviridae. Viruses, 2009, 1, 832-851.	1.5	46
57	Immune Clearance of Attenuated Rabies Virus Results in Neuronal Survival with Altered Gene Expression. PLoS Pathogens, 2012, 8, e1002971.	2.1	46
58	The application of reverse genetics technology in the study of rabies virus (RV) pathogenesis and for the development of novel RV vaccines. Journal of NeuroVirology, 2005, 11, 76-81.	1.0	44
59	Strong cellular and humoral anti-HIV Env immune responses induced by a heterologous rhabdoviral prime–boost approach. Virology, 2005, 331, 82-93.	1.1	44
60	Infection of monocytes or immature dendritic cells (DCs) with an attenuated rabies virus results in DC maturation and a strong activation of the NFκB signaling pathway. Vaccine, 2008, 26, 419-426.	1.7	43
61	In vitro growth and stability of recombinant rabies viruses designed for vaccination of wildlife. Vaccine, 2004, 23, 518-524.	1.7	42
62	Characterization of a Single-Cycle Rabies Virus-Based Vaccine Vector. Journal of Virology, 2010, 84, 2820-2831.	1.5	42
63	Recombinant Rhabdoviruses as Potential Vaccines for HIV-1 and Other Diseases. Current HIV Research, 2003, 1, 229-237.	0.2	39
64	Human T-Cell Responses to Vaccinia Virus Envelope Proteins. Journal of Virology, 2006, 80, 10010-10020.	1.5	39
65	Mechanisms of Loss of Foreign Gene Expression in Recombinant Vesicular Stomatitis Viruses. Virology, 2001, 287, 427-435.	1.1	38
66	A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice. Virology, 2006, 356, 147-154.	1.1	38
67	Rabies virus glycoprotein as a carrier for anthrax protective antigen. Virology, 2006, 353, 344-356.	1.1	37
68	Rabies Virus as a Research Tool and Viral Vaccine Vector. Advances in Virus Research, 2011, 79, 139-164.	0.9	37
69	Retrograde axonal transport of rabies virus is unaffected by interferon treatment but blocked by emetine locally in axons. PLoS Pathogens, 2018, 14, e1007188.	2.1	37
70	Lineage-Specific T-Cell Responses to Cancer Mucosa Antigen Oppose Systemic Metastases without Mucosal Inflammatory Disease. Cancer Research, 2009, 69, 3537-3544.	0.4	35
71	Intravenous Inoculation of a Bat-Associated Rabies Virus Causes Lethal Encephalopathy in Mice through Invasion of the Brain via Neurosecretory Hypothalamic Fibers. PLoS Pathogens, 2009, 5, e1000485.	2.1	35
72	Viral vectors as potential HIV-1 vaccines. FEMS Microbiology Letters, 2001, 200, 123-129.	0.7	34

#	Article	IF	CITATIONS
73	Ifit2 Is a Restriction Factor in Rabies Virus Pathogenicity. Journal of Virology, 2017, 91, .	1.5	33
74	Ebola Virus Localization in the Macaque Reproductive Tract during Acute Ebola Virus Disease. American Journal of Pathology, 2018, 188, 550-558.	1.9	33
75	An Inactivated Rabies Virus–Based Ebola Vaccine, FILORAB1, Adjuvanted With Glucopyranosyl Lipid A in Stable Emulsion Confers Complete Protection in Nonhuman Primate Challenge Models. Journal of Infectious Diseases, 2016, 214, S342-S354.	1.9	32
76	Rhabdovirus-Based Vectors with Human Immunodeficiency Virus Type 1 (HIV-1) Envelopes Display HIV-1-Like Tropism and Target Human Dendritic Cells. Journal of Virology, 2002, 76, 19-31.	1.5	31
77	Rabies virus nucleoprotein as a carrier for foreign antigens. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9405-9410.	3.3	31
78	Highly Attenuated Rabies Virus–Based Vaccine Vectors Expressing Simianâ€Human Immunodeficiency Virus89.6PEnv and Simian Immunodeficiency Virusmac239Gag Are Safe in Rhesus Macaques and Protect from an AIDS‣ike Disease. Journal of Infectious Diseases, 2007, 195, 980-988.	1.9	29
79	Rabies virus-based vaccines elicit neutralizing antibodies, poly-functional CD8+ T cell, and protect rhesus macaques from AIDS-like disease after SIVmac251 challenge. Vaccine, 2009, 28, 299-308.	1.7	29
80	Toward an Effective Ebola Virus Vaccine. Annual Review of Medicine, 2017, 68, 371-386.	5.0	29
81	Enhanced humoral HIV-1-specifc immune responses generated from recombinant rhabdoviral-based vaccine vectors co-expressing HIV-1 proteins and IL-2. Virology, 2006, 344, 363-377.	1.1	28
82	A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence. Virology, 2012, 434, 18-26.	1.1	28
83	Rabies-based vaccine induces potent immune responses against Nipah virus. Npj Vaccines, 2019, 4, 15.	2.9	28
84	Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Current Opinion in Virology, 2019, 35, 1-13.	2.6	28
85	Further characterization of the immune response in mice to inactivated and live rabies vaccines expressing Ebola virus glycoprotein. Vaccine, 2012, 30, 6136-6141.	1.7	27
86	High level expression of a human rabies virus-neutralizing monoclonal antibody by a rhabdovirus-based vector. Journal of Immunological Methods, 2001, 252, 199-206.	0.6	26
87	Rabies virus-based COVID-19 vaccine CORAVAXâ,,¢ induces high levels of neutralizing antibodies against SARS-CoV-2. Npj Vaccines, 2020, 5, 98.	2.9	26
88	siRNA targeting Vaccinia virus double-stranded RNA binding protein [E3L] exerts potent antiviral effects. Virology, 2006, 348, 489-497.	1.1	25
89	Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens. Journal of Virology, 2017, 91, .	1.5	25
90	Inactivated rabies virus vectored SARS-CoV-2 vaccine prevents disease in a Syrian hamster model. PLoS Pathogens, 2021, 17, e1009383.	2.1	24

#	Article	IF	CITATIONS
91	Covalently Linked Human Immunodeficiency Virus Type 1 gp120/gp41 Is Stably Anchored in Rhabdovirus Particles and Exposes Critical Neutralizing Epitopes. Journal of Virology, 2003, 77, 12782-12794.	1.5	22
92	Avoiding preventable deaths: The scourge of counterfeit rabies vaccines. Vaccine, 2019, 37, 2285-2287.	1.7	22
93	Induction of Neutralizing Antibody Responses to Anthrax Protective Antigen by Using Influenza Virus Vectors: Implications for Disparate Immune System Priming Pathways. Journal of Virology, 2010, 84, 8300-8307.	1.5	20
94	Immunization of mice with the non-toxic HC50 domain of botulinum neurotoxin presented by rabies virus particles induces a strong immune response affording protection against high-dose botulinum neurotoxin challenge. Vaccine, 2011, 29, 4638-4645.	1.7	20
95	Immunogenicity Study of Glycoprotein-Deficient Rabies Virus Expressing Simian/Human Immunodeficiency Virus SHIV 89.6P Envelope in a Rhesus Macaque. Journal of Virology, 2004, 78, 13455-13459.	1.5	19
96	The Final (Oral Ebola) Vaccine Trial on Captive Chimpanzees?. Scientific Reports, 2017, 7, 43339.	1.6	19
97	A Recombinant Rabies Virus Expressing the Marburg Virus Glycoprotein Is Dependent upon Antibody-Mediated Cellular Cytotoxicity for Protection against Marburg Virus Disease in a Murine Model. Journal of Virology, 2019, 93, .	1.5	19
98	A single dose of replication-competent VSV-vectored vaccine expressing SARS-CoV-2 S1 protects against virus replication in a hamster model of severe COVID-19. Npj Vaccines, 2021, 6, 91.	2.9	19
99	New Approaches to the Development of Live Attenuated Rabies Vaccines. Hybridoma, 2002, 21, 129-134.	0.6	17
100	Proliferating cell nuclear antigen is required for loading of the SMCX/KMD5C histone demethylase onto chromatin. Epigenetics and Chromatin, 2011, 4, 18.	1.8	17
101	Rhabdoviruses as vectors for vaccines and therapeutics. Current Opinion in Virology, 2020, 44, 169-182.	2.6	17
102	Cell-type-specific gene delivery into neuronal cells in vitro and in vivo. Virology, 2003, 314, 74-83.	1.1	16
103	Comparison of Heterologous Prime-Boost Strategies against Human Immunodeficiency Virus Type 1 Gag Using Negative Stranded RNA Viruses. PLoS ONE, 2013, 8, e67123.	1.1	16
104	Alanine scanning of the rabies virus glycoprotein antigenic site III using recombinant rabies virus: Implication for post-exposure treatment. Vaccine, 2013, 31, 5897-5902.	1.7	14
105	A new recombinant rabies virus expressing a green fluorescent protein: A novel and fast approach to quantify virus neutralizing antibodies. Biologicals, 2019, 59, 56-61.	0.5	14
106	A novel composite immunotoxin that suppresses rabies virus production by the infected cells. Journal of Immunological Methods, 2010, 353, 78-86.	0.6	13
107	A role for granulocyte–macrophage colony-stimulating factor in the regulation of CD8+ T cell responses to rabies virus. Virology, 2012, 426, 120-133.	1.1	13
108	Persistence of Lassa Virus Associated With Severe Systemic Arteritis in Convalescing Guinea Pigs (Cavia porcellus). Journal of Infectious Diseases, 2018, 219, 1818-1822.	1.9	13

#	Article	IF	CITATIONS
109	Inactivated Rabies Virus–Based Ebola Vaccine Preserved by Vaporization Is Heat-Stable and Immunogenic Against Ebola and Protects Against Rabies Challenge. Journal of Infectious Diseases, 2019, 220, 1521-1528.	1.9	12
110	SARS-CoV-2 vaccines — the biggest medical research project of the 21st century. Current Opinion in Virology, 2021, 49, 52-57.	2.6	12
111	Measles-based Zika vaccine induces long-term immunity and requires NS1 antibodies to protect the female reproductive tract. Npj Vaccines, 2022, 7, 43.	2.9	12
112	Dendritic cells infected by recombinant rabies virus vaccine vector expressing HIV-1 Gag are immunogenic even in the presence of vector-specific immunity. Vaccine, 2010, 29, 130-140.	1.7	11
113	Interspecies protein substitution to investigate the role of the lyssavirus glycoprotein. Journal of General Virology, 2013, 94, 284-292.	1.3	11
114	Immunogenicity of Cytopathic and Noncytopathic Viral Vectors. Journal of Virology, 2006, 80, 6259-6266.	1.5	10
115	Cluster Formation and Rheology of Photoreactive Nanoparticle Dispersions. Langmuir, 2008, 24, 5299-5305.	1.6	10
116	Safety and serological response to a matrix gene-deleted rabies virus-based vaccine vector in dogs. Vaccine, 2014, 32, 1716-1719.	1.7	10
117	Controlled viral glycoprotein expression as a safety feature in a bivalent rabies-ebola vaccine. Virus Research, 2015, 197, 54-58.	1.1	10
118	Lyssavirus Vaccine with a Chimeric Glycoprotein Protects across Phylogroups. Cell Reports, 2020, 32, 107920.	2.9	10
119	Tetravalent Rabies-Vectored Filovirus and Lassa Fever Vaccine Induces Long-term Immunity in Nonhuman Primates. Journal of Infectious Diseases, 2021, 224, 995-1004.	1.9	10
120	Targeted single-neuron infection with rabies virus for transneuronal multisynaptic tracing. Journal of Neuroscience Methods, 2012, 209, 367-370.	1.3	9
121	Recombinant rabies virus particles presenting botulinum neurotoxin antigens elicit a protective humoral response in vivo. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14046.	1.8	9
122	Current vaccine strategies against SARS-CoV-2: Promises and challenges. Journal of Allergy and Clinical Immunology, 2022, 150, 17-21.	1.5	7
123	A Strategy to Detect Emerging Non-Delta SARS-CoV-2 Variants with a Monoclonal Antibody Specific for the N501 Spike Residue. Diagnostics, 2021, 11, 2092.	1.3	6
124	Identification and Characterization of a Small-Molecule Rabies Virus Entry Inhibitor. Journal of Virology, 2020, 94, .	1.5	5
125	HIV-1 vaccines: the search continues. Clinics in Laboratory Medicine, 2002, 22, 799-820.	0.7	3
126	Spliced Spleen Necrosis Virus Vector RNA Is Not Encapsidated: Implications for Retroviral Replication and Vector Design. Molecular Therapy, 2004, 9, 557-565.	3.7	3

#	Article	IF	CITATIONS
127	Progress in Ebola Virus Vaccine Development. Journal of Infectious Diseases, 2017, 215, 1775-1776.	1.9	2
128	A Single Dose of the Deactivated Rabies-Virus Vectored COVID-19 Vaccine, CORAVAX, Is Highly Efficacious and Alleviates Lung Inflammation in the Hamster Model. Viruses, 2022, 14, 1126.	1.5	2
129	RABIES VIRUS REPLICATION AND PATHOGENESIS. , 2015, , 335-351.		0
130	Rabies Little Virus Against Powerful Innate Immunity. , 2020, , 141-154.		0

9