Suzanne L Mansour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1935817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FGFR3 overactivation in the brain is responsible for memory impairments in Crouzon syndrome mouse model Journal of Experimental Medicine, 2022, 219, .	4.2	2
2	Genetically modified mouse models to help fight COVID-19. Nature Protocols, 2020, 15, 3777-3787.	5.5	26
3	<i>Slc26a9 P2ACre</i> , a new CRE driver to regulate gene expression in the otic placode lineage and other FGFR2b-dependent epithelia. Development (Cambridge), 2020, 147, .	1.2	0
4	Spatial and temporal inhibition of FGFR2b ligands reveals continuous requirements and novel targets in mouse inner ear morphogenesis. Development (Cambridge), 2018, 145, .	1.2	17
5	Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biology, 2017, 18, 92.	3.8	375
6	SHH ventralizes the otocyst by maintaining basal PKA activity and regulating GLI3 signaling. Developmental Biology, 2016, 420, 100-109.	0.9	10
7	BMP regulates regional gene expression in the dorsal otocyst through canonical and non-canonical intracellular pathways. Development (Cambridge), 2016, 143, 2228-37.	1.2	27
8	Fgf10 is required for specification of non-sensory regions of the cochlear epithelium. Developmental Biology, 2015, 400, 59-71.	0.9	51
9	Endodermâ€specific deletion of <i>Tbx1</i> reveals an FGFâ€independent role for Tbx1 in pharyngeal apparatus morphogenesis. Developmental Dynamics, 2014, 243, 1143-1151.	0.8	24
10	Genetic rescue of Muenke syndrome model hearing loss reveals prolonged FGF-dependent plasticity in cochlear supporting cell fates. Genes and Development, 2013, 27, 2320-2331.	2.7	43
11	Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Developmental Biology, 2011, 356, 383-397.	0.9	47
12	BMP/SMAD signaling regulates the cell behaviors that drive the initial dorsal-specific regional morphogenesis of the otocyst. Developmental Biology, 2010, 347, 369-381.	0.9	20
13	FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Developmental Biology, 2010, 340, 595-604.	0.9	83
14	Hearing loss in a mouse model of Muenke syndrome. Human Molecular Genetics, 2009, 18, 43-50.	1.4	57
15	<i>Fgf16</i> ^{<i>IRESCre</i>} mice: A tool to inactivate genes expressed in inner ear cristae and spiral prominence epithelium. Developmental Dynamics, 2009, 238, 358-366.	0.8	13
16	Conditional gene inactivation reveals roles for <i>Fgf10</i> and <i>Fgfr2</i> in establishing a normal pattern of epithelial branching in the mouse lung. Developmental Dynamics, 2009, 238, 1999-2013.	0.8	171
17	Expression of ERK signaling inhibitors <i>Dusp6</i> , <i>Dusp7</i> , and <i>Dusp9</i> during mouse ear development. Developmental Dynamics, 2008, 237, 163-169.	0.8	36
18	Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development (Cambridge), 2007, 134, 167-176.	1.2	240

SUZANNE L MANSOUR

#	Article	IF	CITATIONS
19	<i>Fgf3</i> is required for dorsal patterning and morphogenesis of the inner ear epithelium. Development (Cambridge), 2007, 134, 3615-3625.	1.2	79
20	FGF8 initiates inner ear induction in chick and mouse. Genes and Development, 2005, 19, 603-613.	2.7	177
21	Morphogenesis of the Inner Ear. , 2005, , 43-84.		13
22	Regulation of external genitalia development by concerted actions of FGF ligands and FGF receptors. Anatomy and Embryology, 2004, 208, 479-86.	1.5	44
23	Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Developmental Biology, 2004, 269, 264-275.	0.9	117
24	Expression of mouse fibroblast growth factor and fibroblast growth factor receptor genes during early inner ear development. Developmental Dynamics, 2003, 228, 267-272.	0.8	70
25	Fgf3 and Fgf10 are required for mouse otic placode induction. Development (Cambridge), 2003, 130, 3379-3390.	1.2	265
26	FGF Signaling in Ear Development and Innervation. Current Topics in Developmental Biology, 2003, 57, 225-259.	1.0	65
27	Impaired Motor Coordination in Mice That Lack punc. Molecular and Cellular Biology, 2001, 21, 6031-6043.	1.1	18
28	Expression and genetic analysis ofprtb, a gene that encodes a highly conserved proline-rich protein expressed in the brain. , 1999, 215, 108-116.		24
29	Expression and genetic analysis of prtb, a gene that encodes a highly conserved proline-rich protein expressed in the brain. , 1999, 215, 108.		1
30	Trapping genes expressed in the developing mouse inner ear. Hearing Research, 1997, 114, 53-61.	0.9	10
31	Targeted disruption ofint-2 (fgf-3) causes developmental defects in the tail and inner ear. Molecular Reproduction and Development, 1994, 39, 62-68.	1.0	53
32	Gene targeting in murine embryonic stem cells: Introduction of specific alterations into the mammalian genome. Gene Analysis Techniques, 1990, 7, 219-227.	1.1	28
33	Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature, 1988, 336, 348-352.	13.7	1,707