Wen-Jian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1935370/publications.pdf

Version: 2024-02-01

34	1,228	18	34
papers	citations	h-index	g-index
36	36	36	975
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polymerizationâ€Induced Selfâ€Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromolecular Rapid Communications, 2019, 40, e1800279.	3.9	189
2	Fabrication of Spaced Concentric Vesicles and Polymerizations in RAFT Dispersion Polymerization. Macromolecules, 2014, 47, 1664-1671.	4.8	89
3	Fabrication of Reductive-Responsive Prodrug Nanoparticles with Superior Structural Stability by Polymerization-Induced Self-Assembly and Functional Nanoscopic Platform for Drug Delivery. Biomacromolecules, 2016, 17, 2992-2999.	5.4	85
4	Formation of Hexagonally Packed Hollow Hoops and Morphology Transition in RAFT Ethanol Dispersion Polymerization. Macromolecular Rapid Communications, 2015, 36, 1428-1436.	3.9	79
5	Efficient Fabrication of Photosensitive Polymeric Nano-objects via an Ingenious Formulation of RAFT Dispersion Polymerization and Their Application for Drug Delivery. Biomacromolecules, 2017, 18, 1210-1217.	5.4	79
6	pH- and Reductant-Responsive Polymeric Vesicles with Robust Membrane-Cross-Linked Structures: In Situ Cross-Linking in Polymerization-Induced Self-Assembly. Macromolecules, 2019, 52, 1140-1149.	4.8	75
7	Promotion of morphology transition of di-block copolymer nano-objects via RAFT dispersion copolymerization. Polymer Chemistry, 2016, 7, 3259-3267.	3.9	60
8	Polymerization-Induced Self-Assembly Generating Vesicles with Adjustable pH-Responsive Release Performance. Macromolecules, 2019, 52, 1965-1975.	4.8	60
9	Artificially Smart Vesicles with Superior Structural Stability: Fabrication, Characterizations, and Transmembrane Traffic. ACS Applied Materials & Interfaces, 2017, 9, 15086-15095.	8.0	47
10	Fabrication and characterization of silica nanotubes with controlled dimensions. Journal of Materials Chemistry A, 2014, 2, 7819.	10.3	44
11	Three New Structural Types of Mo/Ag/S Polymeric Complexes. Angewandte Chemie - International Edition, 1998, 37, 2520-2521.	13.8	40
12	Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers. Nature Communications, 2020, 11, 3654.	12.8	36
13	Polymerization-induced self-assembly for the fabrication of polymeric nano-objects with enhanced structural stability by cross-linking. Polymer Chemistry, 2020, 11, 3654-3672.	3.9	36
14	Polymerizationâ€Induced Selfâ€Assembly to Produce Prodrug Nanoparticles with Reductionâ€Responsive Camptothecin Release and pHâ€Responsive Chargeâ€Reversible Property. Macromolecular Rapid Communications, 2020, 41, e2000260.	3.9	25
15	Photo-responsive camptothecin-based polymeric prodrug coated silver nanoparticles for drug release behaviour tracking <i>via</i> the nanomaterial surface energy transfer (NSET) effect. Journal of Materials Chemistry B, 2018, 6, 1678-1687.	5.8	23
16	Preparation of pH- and reductive-responsive prodrug nanoparticles via polymerization-induced self-assembly. Science China Chemistry, 2018, 61, 1159-1166.	8.2	23
17	Polymer Nanofibers Exhibiting Remarkable Activity in Driving the Living Polymerization under Visible Light and Reusability. Advanced Science, 2020, 7, 1902451.	11.2	22
18	Polymerization-Induced Self-Assembly Driven by the Synergistic Effects of Aromatic and Solvophobic Interactions. Macromolecules, 2021, 54, 2729-2739.	4.8	22

#	Article	IF	Citations
19	Hybrid copolymerization <i>via</i> mechanism interconversion between radical vinyl-addition and anion ring-opening polymerization. Polymer Chemistry, 2019, 10, 2117-2125.	3.9	21
20	Fabrication of Electrospinning Fibers from Spiropyranâ€Based Polymeric Nanowires and their Photochromic Properties. Macromolecular Chemistry and Physics, 2013, 214, 2445-2453.	2.2	18
21	Mitochondria-targeted delivery and light controlled release of iron prodrug and CO to enhance cancer therapy by ferroptosis. New Journal of Chemistry, 2020, 44, 3478-3486.	2.8	18
22	A unique fabrication strategy of hierarchical morphologies: combination of multi-step self-assembling and morphology transition. RSC Advances, 2015, 5, 42637-42644.	3.6	17
23	Photopolymerization performed under dark conditions using long-stored electrons in carbon nitride. Materials Horizons, 2021, 8, 2018-2024.	12.2	15
24	Stable Black Phosphorus Nanosheets Exhibiting High Tumor-Accumulating and Mitochondria-Targeting for Efficient Photothermal Therapy via Double Functionalization. ACS Applied Bio Materials, 2020, 3, 1176-1186.	4.6	14
25	SYNTHESES AND STRUCTURES OF [Et ₄ N] ₂ [Sn(DMIT) ₃] AND [Pb(DMIT)(DMF)] _n (DMIT = 2-THIOXO-1,3-DITHIOLE-4,5-DITHIOLATO). Journal of Coordination Chemistry, 1999, 48, 113-123.	2.2	12
26	Templateâ€Directed Fabrication of Anatase <scp>TiO₂</scp> Hollow Nanoparticles and Their Application in Photocatalytic Degradation of Methyl Orange. Chinese Journal of Chemistry, 2017, 35, 1016-1022.	4.9	12
27	<i>In situ</i> cross-linking polymerization-induced self-assembly not only generates cross-linked structures but also promotes morphology transition by the cross-linker. Polymer Chemistry, 2021, 12, 1768-1775.	3.9	12
28	Single nanosheet can sustainably generate oxygen and inhibit respiration simultaneously in cancer cells. Materials Horizons, 2021, 8, 597-605.	12.2	10
29	Synchronous Synthesis of Polymeric Vesicles with Controllable Size and <scp>Lowâ€Polydispersity</scp> by <scp>Polymerizationâ€Induced Selfâ€Assembly</scp> . Chinese Journal of Chemistry, 2022, 40, 453-459.	4.9	9
30	RAFT dispersion copolymerization of styrene and N-methacryloxysuccinimide: Promoted morphology transition and post-polymerization cross-linking. Polymer, 2021, 221, 123589.	3.8	8
31	Multi-responsive Hyperbranched Star Copolymer: Synthesis, Self-assembly and Controlled Release. Acta Chimica Sinica, 2012, 70, 1690.	1.4	8
32	Hybrid copolymerization of acrylate and thiirane monomers mediated by trithiocarbonate. Polymer Chemistry, 2022, 13, 402-410.	3.9	8
33	Influence of solvent on the RAFT-mediated polymerization of benzyl methacrylate (BzMA) and how to overcome the thermodynamic/kinetic limitation of morphology evolution during polymerization-induced self-assembly. Polymer Chemistry, 2022, 13, 3696-3704.	3.9	3
34	Cu(I) and Cu(II) helical complexes formed with oligobipyridine ligand. Science in China Series B: Chemistry, 1999, 42, 501-510.	0.8	1