Sanghamitra Nayak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1934857/publications.pdf Version: 2024-02-01

SANCHAMITRA NAVAK

#	Article	IF	CITATIONS
1	Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosensors and Bioelectronics, 2017, 87, 708-723.	10.1	151
2	Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. Chemosphere, 2017, 172, 302-309.	8.2	75
3	Chemical diversity, antioxidant and antimicrobial activities of the essential oils from Indian populations of Hedychium coronarium Koen. Industrial Crops and Products, 2018, 112, 353-362.	5.2	73
4	Application of Artificial Neural Network modeling for optimization and prediction of essential oil yield in turmeric (Curcuma longa L.). Computers and Electronics in Agriculture, 2018, 148, 160-178.	7.7	62
5	Chemical composition and antioxidant activity of essential oil from leaves and rhizomes of <i>Curcuma angustifolia</i> Roxb. Natural Product Research, 2017, 31, 2188-2191.	1.8	59
6	In vitro multiplication and microrhizome induction in Curcuma aromatica Salisb Plant Growth Regulation, 2000, 32, 41-47.	3.4	55
7	Chemical Composition of Turmeric Oil (<i>Curcuma longa L.</i> cv. Roma) and its Antimicrobial Activity against Eye Infecting Pathogens. Journal of Essential Oil Research, 2011, 23, 11-18.	2.7	55
8	Evaluation of genetic diversity in turmeric (Curcuma longa L.) using RAPD and ISSR markers. Industrial Crops and Products, 2012, 37, 284-291.	5.2	55
9	Assessment of Genetic Diversity among 16 Promising Cultivars of Ginger Using Cytological and Molecular Markers. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 485-492.	1.4	51
10	Biotechnological intervention in betelvine (Piper betle L.): A review on recent advances and future prospects. Asian Pacific Journal of Tropical Medicine, 2016, 9, 938-946.	0.8	51
11	Perspectives of genomic diversification and molecular recombination towards R-gene evolution in plants. Physiology and Molecular Biology of Plants, 2013, 19, 1-9.	3.1	49
12	Biochemical and molecular profiling of micropropagated and conventionally grown Kaempferia galanga. Plant Cell, Tissue and Organ Culture, 2011, 106, 39-46.	2.3	45
13	Phytochemical investigation and In vitro antioxidant activity of an indigenous medicinal plant Alpinia nigra B.L. Burtt. Asian Pacific Journal of Tropical Biomedicine, 2013, 3, 871-876.	1.2	45
14	Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits. Journal of Basic Microbiology, 2016, 56, 254-262.	3.3	35
15	Detection and Evaluation of Genetic Variation in 17 Promising Cultivars of Turmeric (Curcuma longa) Tj ETQq1	1 0.78431	4 rgBT /Overlo
16	Biotechnological Approaches for Production of Anti-Cancerous Compounds Resveratrol, Podophyllotoxin and Zerumbone. Current Medicinal Chemistry, 2018, 25, 4693-4717.	2.4	30
17	High-frequency clonal propagation of Curcuma angustifolia ensuring genetic fidelity of micropropagated plants. Plant Cell, Tissue and Organ Culture, 2018, 135, 473-486.	2.3	30
18	Application of artificial neural network (ANN) model for prediction and optimization of coronarin D content in Hedvchium coronarium. Industrial Crops and Products, 2020, 146, 112186.	5.2	30

#	Article	IF	CITATIONS
19	Agroclimatic zone based metabolic profiling of turmeric (Curcuma Longa L.) for phytochemical yield optimization. Industrial Crops and Products, 2016, 85, 229-240.	5.2	29
20	Population genetic structure and diversity analysis in economically important Pandanus odorifer (Forssk.) Kuntze accessions employing ISSR and SSR markers. Industrial Crops and Products, 2020, 143, 111894.	5.2	29
21	Deeper insight into the volatile profile of essential oil of two Curcuma species and their antioxidant and antimicrobial activities. Industrial Crops and Products, 2020, 155, 112830.	5.2	29
22	Molecular characterization of NBS encoding resistance genes and induction analysis of a putative candidate gene linked to Fusarium basal rot resistance in Allium sativum. Physiological and Molecular Plant Pathology, 2014, 85, 15-24.	2.5	26
23	Hedychium coronarium extract arrests cell cycle progression, induces apoptosis, and impairs migration and invasion in HeLa cervical cancer cells. Cancer Management and Research, 2019, Volume 11, 483-500.	1.9	26
24	Population genetic structure and diversity analysis in Hedychium coronarium populations using morphological, phytochemical and molecular markers. Industrial Crops and Products, 2019, 132, 118-133.	5.2	26
25	Assessment of the terpenic composition of Hedychium coronarium oil from Eastern India. Industrial Crops and Products, 2017, 97, 49-55.	5.2	25
26	Evaluation of phytomedicinal yield potential and molecular profiling of micropropagated and conventionally grown turmeric (Curcuma longa L.). Plant Cell, Tissue and Organ Culture, 2011, 104, 263-269.	2.3	24
27	Volatile metabolite profiling of ten Hedychium species by gas chromatography mass spectrometry coupled to chemometrics. Industrial Crops and Products, 2018, 126, 135-142.	5.2	24
28	Effect of different extraction techniques on total phenolic and flavonoid contents, and antioxidant activity of betelvine and quantification of its phenolic constituents by validated HPTLC method. 3 Biotech, 2019, 9, 37.	2.2	24
29	Identification of elite genotypes of turmeric through agroclimatic zone based evaluation of important drug yielding traits. Industrial Crops and Products, 2013, 43, 165-171.	5.2	23
30	Development of an ISSR based STS marker for sex identification in pointed gourd (Trichosanthes dioica) Tj ETQq	0 0,0 rgBT 3.6	- Overlock 10
31	Evaluation of yield, quality and antioxidant activity of essential oil of in vitro propagated Kaempferia galanga Linn Journal of Acute Disease, 2014, 3, 124-130.	0.3	23
32	Genetic Stability of Micropropagated Ginger Derived from Axillary Bud through Cytophotometric and RAPD Analysis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 747-754.	1.4	22
33	In vitro and ex vitro evaluation of long-term micropropagated turmeric as analyzed through cytophotometry, phytoconstituents, biochemical and molecular markers. Plant Growth Regulation, 2011, 64, 91-98.	3.4	21
34	Rapid plant regeneration in industrially important Curcuma zedoaria revealing genetic and biochemical fidelity of the regenerants. 3 Biotech, 2020, 10, 17.	2.2	20
35	Transcriptome profiling of the floral buds and discovery of genes related to sex-differentiation in the dioecious cucurbit Coccinia grandis (L.) Voigt. Gene, 2017, 626, 395-406.	2.2	20
36	Molecular and phytochemical stability of long term micropropagated greater galanga (Alpinia) Tj ETQq0 0 0 rgB1	- /Qverlocl	k 10 Tf 50 62

#	Article	IF	CITATIONS
37	Genetic diversity and gene differentiation among ten species of Zingiberaceae from Eastern India. 3 Biotech, 2014, 4, 383-390.	2.2	18
38	<i>In vitro</i> propagation of <i>Hedychium coronarium</i> Koen. through axillary bud proliferation. Plant Biosystems, 2013, 147, 905-912.	1.6	17
39	Influence of extraction methods and solvent system on the chemical composition and antioxidant activity of Centella asiatica L. leaves. Biocatalysis and Agricultural Biotechnology, 2021, 33, 101971.	3.1	17
40	Molecular characterization and functional analysis of CzR1, a coiled-coil-nucleotide-binding-site-leucine-rich repeat R-gene from Curcuma zedoaria Loeb. that confers resistance to Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 2013, 83, 59-68.	2.5	16
41	Development of Prediction Model and Experimental Validation in Predicting the Curcumin Content of Turmeric (Curcuma longa L.). Frontiers in Plant Science, 2016, 7, 1507.	3.6	16
42	Differential expression of CURS gene during various growth stages, climatic condition and soil nutrients in turmeric (Curcuma longa): Towards site specific cultivation for high curcumin yield. Plant Physiology and Biochemistry, 2017, 118, 348-355.	5.8	16
43	Title is missing!. ScienceAsia, 2006, 32, 031.	0.5	16
44	Chemical Composition of Essential Oil from Leaf and Rhizome of Micropropagated and Conventionally Grown <i>Hedychium coronarium</i> Koen. from Eastern India. Journal of Essential Oil-bearing Plants: JEOP, 2015, 18, 161-167.	1.9	15
45	Evaluation of Cultivated and Wild Allium Accessions for Resistance to Fusarium oxysporum f. sp. cepae. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2016, 86, 643-649.	1.0	15
46	Qualitative and Quantitative Evaluation of Rhizome Essential Oil of Eight Different Cultivars of <i>Curcuma longa</i> L. (Turmeric). Journal of Essential Oil-bearing Plants: JEOP, 2019, 22, 239-247.	1.9	15
47	Rapid and stable propagation ofOrnithogalum umbellatum L. in long term culture. Plant Cell Reports, 1995, 15, 150-153.	5.6	14
48	Chemical composition and antioxidant activity of some important betel vine landraces. Biologia (Poland), 2016, 71, 128-132.	1.5	14
49	Transcriptome profiling of Curcuma longa L. cv. Suvarna. Genomics Data, 2016, 10, 33-34.	1.3	14
50	Mining and characterization of EST derived microsatellites in Curcuma longa L. Bioinformation, 2010, 5, 128-131.	0.5	14
51	Phytochemical analysis of flower from <i>Pandanus odorifer</i> (Forssk.) Kuntze for industrial application. Natural Product Research, 2018, 32, 2494-2497.	1.8	13
52	An APETALA3 MADS-box linked SCAR marker associated with male specific sex expression in Coccinia grandis (L). Voigt. Scientia Horticulturae, 2014, 176, 85-90.	3.6	12
53	Characterization of Kewda volatile components by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Natural Product Research, 2017, 31, 853-856.	1.8	12
54	De Novo transcriptome sequencing explored cultivar specific sequence variation and differential expression of pigment synthesis genes in turmeric (Curcuma longa L.). Industrial Crops and Products, 2019, 134, 388-402.	5.2	12

#	Article	IF	CITATIONS
55	Cytological and Cytophotometric Analysis of Direct Explant and Callus Derived Plants of Ornithogalum thyrsoides Jacq Cytologia, 1991, 56, 297-302.	0.6	11
56	Assessment of Genetic Diversity in Zingiberaceae Through Nucleotide Binding Site-Based Motif-Directed Profiling. Biochemical Genetics, 2012, 50, 642-656.	1.7	11
57	Chemical Constituents of Leaf Essential Oil of <i>Curcuma angustifolia</i> Roxb. Growing in Eastern India. Journal of Essential Oil-bearing Plants: JEOP, 2016, 19, 1527-1531.	1.9	11
58	EST-SSR marker revealed effective over biochemical and morphological scepticism towards identification of specific turmeric (Curcuma longa L.) cultivars. 3 Biotech, 2017, 7, 84.	2.2	11
59	Molecular Cloning, Characterization, and Expression Analysis of Resistance Gene Candidates in Kaempferia galanga L Molecular Biotechnology, 2012, 50, 200-210.	2.4	10
60	De Novo transcriptome assembly of Zingiber officinale cv. Suruchi of Odisha. Genomics Data, 2016, 9, 87-88.	1.3	10
61	Development and validation of an HPTLC method for estimation of coronarin D in Hedychium coronarium rhizome. Acta Chromatographica, 2017, 29, 415-426.	1.3	9
62	Intraspecific Chemical Variability of Essential Oil of Curcuma caesia (Black Turmeric). Arabian Journal for Science and Engineering, 2021, 46, 191-198.	3.0	9
63	Rapid multiplication and in vitro production of leaf biomass in Kaempferia galanga through tissue culture. Electronic Journal of Biotechnology, 2010, 13, .	2.2	8
64	In vitro induction, screening and detection of high essential oil yielding somaclones in turmeric (Curcuma longa L.). Plant Growth Regulation, 2014, 72, 59-66.	3.4	8
65	Association of growth and yield parameters with bioactive phytoconstituents in selection of promising turmeric genotypes. Industrial Crops and Products, 2014, 62, 373-379.	5.2	8
66	A Combined Approach Using ISSR and Volatile Compound Analysis for Assessment of Genetic and Phytochemical Diversity in <i>Zingiber zerumbet</i> (L.) from Eastern India. Journal of Essential Oil-bearing Plants: JEOP, 2019, 22, 31-49.	1.9	8
67	Chemical composition and antioxidant activities of essential oil of <i>Hedychium greenii</i> and <i>Hedychium gracile</i> from India. Natural Product Research, 2019, 33, 1482-1485.	1.8	8
68	Enhancement of Bioactivities of Rhizome Essential Oil of <i>Alpinia galanga</i> (Greater galangal) Through Nanoemulsification. Journal of Essential Oil-bearing Plants: JEOP, 2021, 24, 648-657.	1.9	8
69	Genetic Stability Assessment of Micropropagated Mango Ginger (Curcuma amada Roxb.) Through RAPD and ISSR Markers. Research Journal of Medicinal Plant, 2012, 6, 529-536.	0.3	8
70	Development and evaluation of STS diagnostic marker to track turmeric (Curcuma longa L.) resistance against rhizome rot caused by Pythium aphanidermatum. Australasian Plant Pathology, 2014, 43, 167-175.	1.0	7
71	Molecular modeling and identification of novel glucokinase activators through stepwise virtual screening. Journal of Molecular Graphics and Modelling, 2015, 57, 122-130.	2.4	7
72	Variation in Volatile Constituents and Eugenol Content of Five Important Betelvine (<i>Piper) Tj ETQq0 0 0 rgB1</i>	/Overlock 1.9	10 Tf 50 67 1 7

19, 1788-1793.

#	Article	IF	CITATIONS
73	Electron Ionization Based Detection of Volatile Constituents of Aerial Parts of <i>Eclipta prostrata</i> (Linn.) by One Dimensional Gas Chromatography and Mass Spectrometry. Journal of Essential Oil-bearing Plants: JEOP, 2020, 23, 559-566.	1.9	7
74	Thermal desorption modulation based detection of volatile constituents of <i>Alpinia galanga</i> by two dimensional gas chromatography and time of flight mass spectrometry. Natural Product Research, 2021, 35, 512-516.	1.8	7
75	Chemical Composition and Biological Activities of Leaf Essential Oil of <i>Syzygium myrtifolium</i> from Eastern India. Journal of Essential Oil-bearing Plants: JEOP, 2021, 24, 582-595.	1.9	7
76	Chemical Composition and Antioxidant Activities of Essential oil from Leaf and Stem of <i>Elettaria cardamomum</i> from Eastern India. Journal of Essential Oil-bearing Plants: JEOP, 2021, 24, 538-546.	1.9	7
77	Drying methods affects physicochemical characteristics, essential oil yield and volatile composition of turmeric (Curcuma longa L.). Journal of Applied Research on Medicinal and Aromatic Plants, 2022, 26, 100357.	1.5	7
78	In Vitro Conservation of Nine Medicinally and Economically Important Species of Zingiberaceae from Eastern India. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2014, 84, 799-803.	1.0	6
79	Development and validation of ELISA technique for early detection of rhizome rot in golden spice turmeric from different agroclimatic zones. LWT - Food Science and Technology, 2016, 66, 546-552.	5.2	6
80	Phytoconstituents Analysis and Bioactivity Study of <i>Alpinia nigra</i> (Gaertn.) Burtt. Journal of Essential Oil-bearing Plants: JEOP, 2017, 20, 1461-1471.	1.9	6
81	Development of a colloidal gold stripâ€based immunochromatographic assay for rapid detection ofFusarium oxysporumin ginger. Journal of the Science of Food and Agriculture, 2019, 99, 6155-6166.	3.5	6
82	EST-SSR marker-based genetic diversity and population structure analysis of Indian Curcuma species: significance for conservation. Revista Brasileira De Botanica, 2021, 44, 411-428.	1.3	6
83	Phytochemical Composition of Flower Essential Oil of Plumeria alba Grown in India. Journal of Essential Oil-bearing Plants: JEOP, 2021, 24, 671-676.	1.9	6
84	Chemical Composition of Carvacrol Rich Leaf Essential Oil of <i>Thymus vulgaris</i> from India: Assessment of Antimicrobial, Antioxidant and Cytotoxic Potential. Journal of Essential Oil-bearing Plants: JEOP, 2021, 24, 1134-1145.	1.9	6
85	Retention of drug yielding potential of micropropagated Hedychium coronarium. Biologia (Poland), 2015, 70, 34-38.	1.5	5
86	In Vitro Plant Regeneration Potential of Genetically Stable Globba marantina L., Zingiberaceous Species and its Conservation. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 321-327.	1.0	5
87	Development and evaluation of polyclonal antibodies for detection of <i>Pythium aphanidermatum</i> and <i>Fusarium oxysporum</i> in ginger. Food and Agricultural Immunology, 2018, 29, 204-215.	1.4	5
88	Anticancerous and Immunomodulatory Activities of Alpinia nigra (Gaertn.) Burtt. Journal of Essential Oil-bearing Plants: JEOP, 2018, 21, 869-875.	1.9	5
89	Chemical Composition, Antioxidant, Anti-inflammatory and Anticancer Activities of Bark Essential Oil of <i>Cryptocarya amygdalina</i> from India. Journal of Essential Oil-bearing Plants: JEOP, 2021, 24, 617-631.	1.9	5
90	A comparative study of essential oil profile, antibacterial and antioxidant activities of thirty Piper betle landraces towards selection of industrially important chemotypes. Industrial Crops and Products, 2022, 187, 115289.	5.2	5

#	Article	IF	CITATIONS
91	Regeneration ofAsparagus robustusHort Journal of Herbs, Spices and Medicinal Plants, 1998, 5, 43-50.	1.1	4
92	Nuclear DNA, DNA finger printing and essential oil content variation in callus derived regenerants of Curcuma longa L Nucleus (India), 2012, 55, 101-106.	2.2	4
93	A sequence tagged site (STS) marker encoding Copia-like retrotransposable element is associated with male specific sex expression in Momordica dioica Roxb Scientia Horticulturae, 2016, 201, 265-270.	3.6	4
94	Chemical Constituent Analysis and Antioxidant Activity of Leaf Essential Oil of <i>Curcuma xanthorrhiza</i> . Journal of Essential Oil-bearing Plants: JEOP, 2021, 24, 736-744.	1.9	4
95	ZERUMBONE, A NATURAL PLANT DIETARY COMPOUND INDUCES EXPRESSION OF INTERLEUKIN-12P70 CYTOKINE IN HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS. Asian Journal of Pharmaceutical and Clinical Research, 2016, 9, 312.	0.3	3
96	Genetic diversity analysis and redundant identification in 48 core collections of Zingiber officinale Rosc. (Zingiberaceae). Revista Brasileira De Botanica, 2016, 39, 869-883.	1.3	3
97	Physicochemical characteristics of the <i>Lasiococca comberi</i> Haines seeds. Natural Product Research, 2018, 32, 2352-2355.	1.8	3
98	Chemical Composition and Anti-proliferative Activity of Essential Oil from Rhizomes of Micropropagated Curcuma aromatica in Eastern India. Journal of Biologically Active Products From Nature, 2020, 10, 1-7.	0.3	3
99	Mining of trait specific gene candidates through mRNA sequencing emphasizing on expression study of terpenoid biosynthesis genes in betelvine cash crop. Industrial Crops and Products, 2021, 162, 113292.	5.2	3
100	Edible plant-derived essential oils synergistically enhance the Th1, Th2 and anti-inflammatory cytokines in neonatal cord blood monocytic cell line. Food and Agricultural Immunology, 2018, 29, 346-357.	1.4	3
101	Anti-proliferative activity of in vitro Zingiberaceae essential oil against Human cervical cancer (HeLa) cell line. Research Journal of Pharmacy and Technology, 2022, , 325-328.	0.8	3
102	Application of a Multilayer Perceptron Artificial Neural Network for the Prediction and Optimization of the Andrographolide Content in Andrographis paniculata. Molecules, 2022, 27, 2765.	3.8	3
103	Environmental Factors Influencing Yield and Quality of Essential Oils in Curcuma longa cv. Lakadong. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2021, 91, 761-767.	1.0	2
104	Cultivation and Utilization of Pandanus odorifer for Industrial Application. Sustainable Development and Biodiversity, 2021, , 435-456.	1.7	2
105	Curcuma angustifolia ameliorates carbon tetrachloride-induced hepatotoxicity in HepG2 cells and Swiss albino rats. Asian Pacific Journal of Tropical Medicine, 2019, 12, 416.	0.8	2
106	Free radical scavenging potential of Alpinia calcarata Roscoe leaves. Research Journal of Pharmacy and Technology, 2020, 13, 3356.	0.8	2
107	Chemical Composition and Antioxidant Activity of the Leaf Essential Oil of Cryptocarya amygdalina. Chemistry of Natural Compounds, 2021, 57, 1150-1152.	0.8	2
108	Derivatives of Cinnamic Acid Esters and Terpenic Diversity in Volatiles of Thirty-Six Sand Ginger (Kaempferia galanga L.) Accessions of Eastern India Revealing Quality Chemovars. Molecules, 2022, 27, 1116.	3.8	2

#	Article	IF	CITATIONS
109	Artificial neural network (ANN) model for prediction and optimization of bacoside A content in <i>Bacopa monnieri</i> : a statistical approach and experimental validation. Plant Biosystems, 2022, 156, 1346-1357.	1.6	2
110	Plant Regeneration from Callus Culture ofCymbopogon(Jamrosa). Journal of Herbs, Spices and Medicinal Plants, 1996, 4, 39-46.	1.1	1
111	Chemometric Profile of Curcuma longa L. Towards Standardization of Factors for High Essential Oil Yield and Quality. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 949-957.	1.0	1
112	Identification of Chemical Constituents of <i>Zingiber zerumbet</i> Rhizome Extract Using GC/MS. Journal of Biologically Active Products From Nature, 2020, 10, 411-417.	0.3	1
113	In silico mining of SSR markers from expressed sequence tags of Clematis chinensis. Gene Reports, 2020, 21, 100810.	0.8	1
114	Chemical composition of Hedychium coronarium Koen. flowers from eastern India. Plant Science Today, 2019, 6, 259-263.	0.7	1
115	Simultaneous quantification of vasicine and vasicinone in different parts of Justicia adhatoda using high-performance thin-layer chromatography‒densitometry: comparison of different extraction techniques and solvent systems. Journal of Planar Chromatography - Modern TLC, 2020, 33, 599-607.	1.2	1
116	Quality Control and Discrimination of Andrographis paniculata (Burm. f.) Nees based on High Performance Liquid Chromatography Fingerprinting Combined with Chemometric Approaches. , 2021, 83, .		1
117	Rapid <i>in vitro</i> Leaf Biomass Production of Genetically Stable <i>Curcuma aromatica</i> An Under Exploited Medicinal Plant. Journal of Biologically Active Products From Nature, 2021, 11, 497-504.	0.3	1
118	Chemical Composition, Antimicrobial and Cytotoxic Activity of the Essential Oil of <i>Platostoma hispidum</i> , an Unexplored Species of Lamiaceae. Journal of Essential Oil-bearing Plants: JEOP, 2021, 24, 1300-1310.	1.9	1
119	Intraspecific variability in yield and chemical composition of essential oil of the endemic species <i>Hypericum gaitii</i> from different natural habitats of Eastern India. Plant Biosystems, 0, , 1-10.	1.6	1
120	Quantitative and chemical fingerprint analysis for quality control of Zingiber zerumbet based on HPTLC combined with chemometric methods. Plant Biosystems, 2021, 155, 711-720.	1.6	0
121	Pharmacological activity and biochemical interaction of zingerone: a flavour additive in spice food. Plant Science Today, 0, , .	0.7	0
122	Chemical Composition and Antioxidant Activity of the Leaf Essential Oil of Schefflera venulosa. Chemistry of Natural Compounds, 2021, 57, 1147-1149.	0.8	0
123	Identification of elite germplasm of medicinally important <i>Andrographis paniculata</i> (Burm. f.) Nees with high content of four active diterpenoids in aerial parts from wild populations of eastern India. Plant Genetic Resources: Characterisation and Utilisation, 0, , 1-4.	0.8	0
124	Chemical Composition and Biological Activity of Essential Oil of Phoebe wightii. Chemistry of Natural Compounds, 0, , .	0.8	0
125	<i>Zingiber zerumbet</i> Rhizome Essential Oil Induces Cytotoxicity, Apoptosis and Cell Cycle Arrest in Jurkat Cells. Journal of Essential Oil-bearing Plants: JEOP, 0, , 1-12.	1.9	Ο