
Asmus A Meyer-Plath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1934634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Practicable Measurement Strategy for Compliance Checking Number Concentrations of Airborne Nano- and Microscale Fibers. Atmosphere, 2020, 11, 1254.	1.0	6
2	Measurement of Flexural Rigidity of Multi-Walled Carbon Nanotubes by Dynamic Scanning Electron Microscopy. Fibers, 2020, 8, 31.	1.8	7
3	Indoor dispersion of airborne nano and fine particles: Main factors affecting spatial and temporal distribution in the frame of exposure modeling. Indoor Air, 2019, 29, 803-816.	2.0	6
4	Assessment of nanofibre dustiness by means of vibro-fluidization. Powder Technology, 2019, 342, 491-508.	2.1	10
5	Release of Respirable Fibrous Dust from Carbon Fibers Due to Splitting along the Fiber Axis. Aerosol and Air Quality Research, 2019, 19, 2185-2195.	0.9	14
6	1601eâ€A new risk grouping concept for high aspect ratio materials – adding fibre rigidity to the picture. , 2018, , .		0
7	1601fâ€A new risk grouping concept for high aspect ratio materials – the shaker dustiness test. , 2018, , .		0
8	Comparison of Geometrical Layouts for a Multi-Box Aerosol Model from a Single-Chamber Dispersion Study. Environments - MDPI, 2018, 5, 52.	1.5	14
9	Continuous dry dispersion of multi-walled carbon nanotubes to aerosols with high concentrations of individual fibers. Journal of Nanoparticle Research, 2018, 20, 154.	0.8	1
10	Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Science of the Total Environment, 2017, 603-604, 793-806.	3.9	69
11	Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. Science of the Total Environment, 2017, 605-606, 929-945.	3.9	34
12	The peculiar behavior of functionalized carbon nanotubes in hydrocarbons and polymeric oxidation environments. Journal of Adhesion Science and Technology, 2017, 31, 988-1006.	1.4	5
13	Release of 14C-labelled carbon nanotubes from polycarbonate composites. Environmental Pollution, 2016, 215, 356-365.	3.7	25
14	Stable aqueous dispersions of functionalized multi-layer graphene by pulsed underwater plasma exfoliation of graphite. Journal Physics D: Applied Physics, 2016, 49, 045301.	1.3	4
15	Coating of carbon fibers with adhesion-promoting thin poly(acrylic acid) and poly(hydroxyethylmethacrylate) layers using electrospray ionization. Journal of Adhesion Science and Technology, 2015, 29, 1628-1650.	1.4	11
16	Plasma-chemically brominated single-walled carbon nanotubes as novel catalysts for oil hydrocarbons aerobic oxidation. Applied Catalysis A: General, 2013, 454, 115-118.	2.2	10
17	UV Spectrometric Indirect Analysis of Brominated MWCNTs with UV Active Thiols and an Alkene—Reaction Kinetics, Quantification and Differentiation of Adsorbed Bromine and Oxygen. Materials, 2013, 6, 3035-3063.	1.3	3

18 Nanomaterial Characterization and Metrology. , 2013, , 13-40.

#	Article	IF	CITATIONS
19	Study of Lewis acid catalyzed chemical bromination and bromoalkylation of multi-walled carbon nanotubes. Carbon, 2012, 50, 1373-1385.	5.4	39
20	Thermoacoustic generation of airborne ultrasound using carbon materials at the micro- and nanoscale. International Journal of Applied Electromagnetics and Mechanics, 2012, 39, 35-41.	0.3	6
21	Carbon nanomaterials as broadband airborne ultrasound transducer. , 2012, , .		3
22	Plasmabromierung von graphitischen Materialien. Vakuum in Forschung Und Praxis, 2012, 24, 24-29.	0.0	1
23	Plasma-thermal purification and annealing of carbon nanotubes. Carbon, 2012, 50, 3934-3942.	5.4	60
24	Status of characterization techniques for carbon nanotubes and suggestions towards standards suitable for toxicological assessment. Journal of Physics: Conference Series, 2011, 304, 012087.	0.3	3
25	The International Team in NanosafeTy (TITNT): A Multidisciplinary group for an improvement of Nanorisk Assessment and Management. Journal of Physics: Conference Series, 2011, 304, 012086.	0.3	0
26	Differentiation and quantification of surface acidities on MWCNTs by indirect potentiometric titration. Carbon, 2011, 49, 2978-2988.	5.4	41
27	Plasma-chemical bromination of graphitic materials and its use for subsequent functionalization and grafting of organic molecules. Carbon, 2010, 48, 3884-3894.	5.4	67
28	Selective Surface Modification of Polypropylene using Underwater Plasma Technique or Underwater Capillary Discharge. Plasma Processes and Polymers, 2009, 6, S218.	1.6	27
29	New Plasma Techniques for Polymer Surface Modification with Monotype Functional Groups. Plasma Processes and Polymers, 2008, 5, 407-423.	1.6	94
30	Selective Surface Modification of Poly(propylene) with OH and COOH Groups Using Liquidâ€Plasma Systems. Plasma Processes and Polymers, 2008, 5, 695-707.	1.6	53
31	Pattern Guided Cell Growth on Gas Discharge Plasma Induced Chemical Microstructured Polymer Surfaces. , 2005, , 167-171.		3
32	Absolute density distribution of H atoms in a large-scale microwave plasma reactor. Plasma Sources Science and Technology, 2003, 12, 554-560.	1.3	8
33	Title is missing!. Plasmas and Polymers, 2002, 7, 103-125.	1.5	49
34	Plasma-Induced Surface Functionalization of Polymeric Biomaterials in Ammonia Plasma. Contributions To Plasma Physics, 2001, 41, 562-572.	0.5	79
35	Design of an UHV reactor system for plasma surface treatment of polymer materials. Surface and Coatings Technology, 1999, 116-119, 1006-1010.	2.2	8
36	Chemical micropatterning of polymeric cell culture substrates using low-pressure hydrogen gas discharge plasmas. Journal of Materials Science: Materials in Medicine, 1999, 10, 747-754.	1.7	32

#	Article	IF	CITATIONS
37	Plasma Bromination â€"A Selective Way To Monotype Functionalized Polymer Surfaces. , 0, , 1-18.		2