
Beverly A Rothermel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1934584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest through DNA Damage Response. Cell, 2014, 157, 565-579.	28.9	688
2	Cardiac autophagy is a maladaptive response to hemodynamic stress. Journal of Clinical Investigation, 2007, 117, 1782-1793.	8.2	672
3	Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proceedings of the United States of America, 2013, 110, 187-192.	7.1	654
4	Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. Journal of Cell Science, 2011, 124, 2143-2152.	2.0	483
5	Mitochondrial dynamics, mitophagy and cardiovascular disease. Journal of Physiology, 2016, 594, 509-525.	2.9	441
6	A Protein Encoded within the Down Syndrome Critical Region Is Enriched in Striated Muscles and Inhibits Calcineurin Signaling. Journal of Biological Chemistry, 2000, 275, 8719-8725.	3.4	380
7	Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4123-4128.	7.1	360
8	Suppression of Class I and II Histone Deacetylases Blunts Pressure-Overload Cardiac Hypertrophy. Circulation, 2006, 113, 2579-2588.	1.6	328
9	Spliced X-Box Binding Protein 1 Couples the Unfolded Protein Response to Hexosamine Biosynthetic Pathway. Cell, 2014, 156, 1179-1192.	28.9	317
10	Autophagy in cardiovascular biology. Journal of Clinical Investigation, 2015, 125, 55-64.	8.2	294
11	Independent Signals Control Expression of the Calcineurin Inhibitory Proteins MCIP1 and MCIP2 in Striated Muscles. Circulation Research, 2000, 87, E61-8.	4.5	292
12	Foxo Transcription Factors Blunt Cardiac Hypertrophy by Inhibiting Calcineurin Signaling. Circulation, 2006, 114, 1159-1168.	1.6	278
13	Metabolic stress–induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. Journal of Clinical Investigation, 2012, 122, 1109-1118.	8.2	274
14	Beclin-1-Dependent Autophagy Protects the Heart During Sepsis. Circulation, 2018, 138, 2247-2262.	1.6	255
15	Unraveling the Temporal Pattern of Diet-Induced Insulin Resistance in Individual Organs and Cardiac Dysfunction in <scp>c57bl/6</scp> Mice. Diabetes, 2005, 54, 3530-3540.	0.6	251
16	FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20517-20522.	7.1	227
17	Intracellular Protein Aggregation Is a Proximal Trigger of Cardiomyocyte Autophagy. Circulation, 2008, 117, 3070-3078.	1.6	218
18	Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proceedings of the United States of America, 2003, 100, 669-674.	7.1	211

#	Article	IF	CITATIONS
19	Autophagy is an adaptive response in desmin-related cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9745-9750.	7.1	209
20	Insulin Stimulates Mitochondrial Fusion and Function in Cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 Signaling Pathway. Diabetes, 2014, 63, 75-88.	0.6	195
21	Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nature Medicine, 2004, 10, 1336-1343.	30.7	191
22	Autophagy in Load-Induced Heart Disease. Circulation Research, 2008, 103, 1363-1369.	4.5	179
23	Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. International Journal of Biochemistry and Cell Biology, 2012, 44, 16-20.	2.8	162
24	Cardiovascular autophagy. Autophagy, 2013, 9, 1455-1466.	9.1	162
25	The Role of Modulatory Calcineurin-Interacting Proteins in Calcineurin Signaling. Trends in Cardiovascular Medicine, 2003, 13, 15-21.	4.9	157
26	Mitochondrial fission is required for cardiomyocyte hypertrophy via a Ca2+-calcineurin signalling pathway. Journal of Cell Science, 2014, 127, 2659-71.	2.0	140
27	Cardiac-Specific LIM Protein FHL2 Modifies the Hypertrophic Response to β-Adrenergic Stimulation. Circulation, 2001, 103, 2731-2738.	1.6	136
28	STIM1-dependent store-operated Ca2+ entry is required for pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2012, 52, 136-147.	1.9	133
29	Multiple Domains of MCIP1 Contribute to Inhibition of Calcineurin Activity. Journal of Biological Chemistry, 2002, 277, 30401-30407.	3.4	131
30	Cardiac-Specific Overexpression of Peroxisome Proliferator–Activated Receptor-α Causes Insulin Resistance in Heart and Liver. Diabetes, 2005, 54, 2514-2524.	0.6	113
31	Autophagy in Hypertensive Heart Disease. Journal of Biological Chemistry, 2010, 285, 8509-8514.	3.4	105
32	Targeted Inhibition of Calcineurin in Pressure-overload Cardiac Hypertrophy. Journal of Biological Chemistry, 2002, 277, 10251-10255.	3.4	104
33	MCIP1 Overexpression Suppresses Left Ventricular Remodeling and Sustains Cardiac Function After Myocardial Infarction. Circulation Research, 2004, 94, e18-26.	4.5	104
34	Physical and Functional Interaction Between Calcineurin and the Cardiac L-Type Ca ²⁺ Channel. Circulation Research, 2009, 105, 51-60.	4.5	101
35	Rtg3p, a Basic Helix-Loop-Helix/Leucine Zipper Protein that Functions in Mitochondrial-induced Changes in Gene Expression, Contains Independent Activation Domains. Journal of Biological Chemistry, 1997, 272, 19801-19807.	3.4	98
36	The Down Syndrome Critical Region Protein RCAN1 Regulates Long-Term Potentiation and Memory via Inhibition of Phosphatase Signaling. Journal of Neuroscience, 2007, 27, 13161-13172.	3.6	98

#	Article	IF	CITATIONS
37	Mechanical Unloading Activates FoxO3 to Trigger Bnip3â€Đependent Cardiomyocyte Atrophy. Journal of the American Heart Association, 2013, 2, e000016.	3.7	90
38	ER-to-mitochondria miscommunication and metabolic diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2096-2105.	3.8	90
39	Calcineurin Is Necessary for the Maintenance but Not Embryonic Development of Slow Muscle Fibers. Molecular and Cellular Biology, 2005, 25, 6629-6638.	2.3	88
40	Calcineurin signaling in the heart: The importance of time and place. Journal of Molecular and Cellular Cardiology, 2017, 103, 121-136.	1.9	81
41	FoxO, Autophagy, and Cardiac Remodeling. Journal of Cardiovascular Translational Research, 2010, 3, 355-364.	2.4	79
42	A calcineurin–Hoxb13 axis regulates growth mode of mammalian cardiomyocytes. Nature, 2020, 582, 271-276.	27.8	77
43	Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases?. Endocrine Reviews, 2020, 41, .	20.1	76
44	Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca ²⁺ Channel Protein Stability. Circulation, 2015, 131, 2131-2142.	1.6	71
45	Endolysosomal twoâ€pore channels regulate autophagy in cardiomyocytes. Journal of Physiology, 2016, 594, 3061-3077.	2.9	70
46	Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression. Science Signaling, 2016, 9, ra34.	3.6	69
47	Maize NADP-malate dehydrogenase: cDNA cloning, sequence, and mRNA characterization. Plant Molecular Biology, 1989, 12, 713-722.	3.9	64
48	Myocyte Autophagy in Heart Disease: Friend or Foe?. Autophagy, 2007, 3, 632-634.	9.1	64
49	Mitochondrial Fission and Autophagy in the Normal and Diseased Heart. Current Hypertension Reports, 2010, 12, 418-425.	3.5	63
50	RCAN1 overexpression promotes age-dependent mitochondrial dysregulation related to neurodegeneration in Alzheimer's disease. Acta Neuropathologica, 2015, 130, 829-843.	7.7	61
51	Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure. Physiological Genomics, 2005, 23, 18-27.	2.3	59
52	The complex interplay between mitochondrial dynamics and cardiac metabolism. Journal of Bioenergetics and Biomembranes, 2011, 43, 47-51.	2.3	59
53	Maize C4 and non-C4 NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor. Plant Molecular Biology, 2002, 50, 635-652.	3.9	58
54	FHL2 Binds Calcineurin and Represses Pathological Cardiac Growth. Molecular and Cellular Biology, 2012, 32, 4025-4034.	2.3	55

#	Article	IF	CITATIONS
55	Cytoglobin modulates myogenic progenitor cell viability and muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E129-38.	7.1	55
56	Transactivation by Rtg1p, a Basic Helix-Loop-Helix Protein That Functions in Communication between Mitochondria and the Nucleus in Yeast. Journal of Biological Chemistry, 1995, 270, 29476-29482.	3.4	51
57	Reversibility of Adverse, Calcineurin-Dependent Cardiac Remodeling. Circulation Research, 2011, 109, 407-417.	4.5	51
58	Mitochondria in Structural and Functional Cardiac Remodeling. Advances in Experimental Medicine and Biology, 2017, 982, 277-306.	1.6	51
59	Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1113-1118.	4.1	50
60	Down Syndrome Critical Region 1 Gene, <i>Rcan1</i> , Helps Maintain a More Fused Mitochondrial Network. Circulation Research, 2018, 122, e20-e33.	4.5	47
61	Histone deacetylase inhibition in the treatment of heart disease. Expert Opinion on Drug Safety, 2008, 7, 53-67.	2.4	46
62	Sustained Hemodynamic Stress Disrupts Normal Circadian Rhythms in Calcineurin-Dependent Signaling and Protein Phosphorylation in the Heart. Circulation Research, 2011, 108, 437-445.	4.5	46
63	Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER–mitochondria communication during the early phase of ER stress. Cell Death and Differentiation, 2019, 26, 1195-1212.	11.2	46
64	The Gal4 Activation Domain Binds Sug2 Protein, a Proteasome Component, in Vivo and in Vitro. Journal of Biological Chemistry, 2001, 276, 30956-30963.	3.4	43
65	Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Communication and Signaling, 2014, 12, 68.	6.5	37
66	Calcineurin and its regulator, RCAN1, confer time-of-day changes in susceptibility of the heart to ischemia/reperfusion. Journal of Molecular and Cellular Cardiology, 2014, 74, 103-111.	1.9	37
67	Regulator of Calcineurin 1 Controls Growth Plasticity of Adult Pancreas. Gastroenterology, 2010, 139, 609-619.e6.	1.3	33
68	mTORC1 inhibitor rapamycin and ER stressor tunicamycin induce differential patterns of ER-mitochondria coupling. Scientific Reports, 2016, 6, 36394.	3.3	32
69	Calcineurin Activates Cytoglobin Transcription in Hypoxic Myocytes. Journal of Biological Chemistry, 2009, 284, 10409-10421.	3.4	30
70	Regulator of Calcineurin 1 helps coordinate wholeâ€body metabolism and thermogenesis. EMBO Reports, 2018, 19, .	4.5	30
71	Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Circulation, 2021, 144, 34-51.	1.6	30
72	The CCAAT/Enhancer Binding Protein β (C/EBPβ) Cooperates with NFAT to Control Expression of the Calcineurin Regulatory Protein RCAN1–4. Journal of Biological Chemistry, 2010, 285, 16623-16631.	3.4	29

#	Article	IF	CITATIONS
73	Angiotensin-(1–9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death and Differentiation, 2020, 27, 2586-2604.	11.2	29
74	Protection of the myocardium against ischemia/reperfusion injury by angiotensin-(1–9) through an AT2R and Akt-dependent mechanism. Pharmacological Research, 2018, 135, 112-121.	7.1	28
75	FoxO1–Dio2 signaling axis governs cardiomyocyte thyroid hormone metabolism and hypertrophic growth. Nature Communications, 2020, 11, 2551.	12.8	26
76	ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress. Circulation Research, 2022, 131, 91-105.	4.5	26
77	The integrated stress response in ischemic diseases. Cell Death and Differentiation, 2022, 29, 750-757.	11.2	23
78	Targets, trafficking, and timing of cardiac autophagy. Pharmacological Research, 2012, 66, 494-504.	7.1	20
79	Regulator of Calcineurin 1 Modulates Expression of Innate Anxiety and Anxiogenic Responses to Selective Serotonin Reuptake Inhibitor Treatment. Journal of Neuroscience, 2013, 33, 16930-16944.	3.6	16
80	Endoplasmic reticulumâ~'mitochondria coupling increases during doxycycline-induced mitochondrial stress in HeLa cells. Cell Death and Disease, 2021, 12, 657.	6.3	16
81	Calcineurin in the heart: New horizons for an old friend. Cellular Signalling, 2021, 87, 110134.	3.6	16
82	Models of cardiac hypertrophy and transition to heart failure. Drug Discovery Today: Disease Models, 2007, 4, 197-206.	1.2	15
83	The heart of autophagy: Deconstructing cardiac proteotoxicity. Autophagy, 2008, 4, 932-935.	9.1	15
84	Chapter 17 Autophagy in Loadâ€Induced Heart Disease. Methods in Enzymology, 2009, 453, 343-363.	1.0	15
85	An integrated mechanism of cardiomyocyte nuclear Ca2+ signaling. Journal of Molecular and Cellular Cardiology, 2014, 75, 40-48.	1.9	15
86	Adenosine A ₃ Receptor and Cardioprotection. Circulation, 2008, 118, 1691-1693.	1.6	9
87	Pharmacological Priming of Adipose-Derived Stem Cells Promotes Myocardial Repair. Journal of Investigative Medicine, 2016, 64, 50-62.	1.6	9
88	Fecal corticosterone levels in RCAN1 mutant mice. Comparative Medicine, 2012, 62, 87-94.	1.0	5
89	Retrograde regulation: a novel path of communication between mitochondria, the nucleus, and peroxisomes in yeast. Canadian Journal of Botany, 1995, 73, 205-207.	1.1	3
90	Targeting calcineurin induces cardiomyocyte proliferation in adult mice. , 2022, 1, 679-688.		2

6

#	Article	IF	CITATIONS
91	Guanosine Triphosphatase Activation Occurs Downstream of Calcineurin in Cardiac Hypertrophy*. Journal of Investigative Medicine, 2005, 53, 414-424.	1.6	1
92	Molecular Mechanisms of Cardiac Hypertrophy and Failure. Circulation, 2006, 113, .	1.6	0
93	Central Calcineurin Plays a Role in Skeletal Muscle Reflex Overactivity Induced by High Dietary Phosphate Intake in Rats. FASEB Journal, 2021, 35, .	0.5	0
94	Epigenetic dysregulation via regulator of calcineurin 1 (RCAN1) in Alzheimer's disease. FASEB Journal, 2012, 26, 928.8.	0.5	0