
Yuval Shaked

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1934464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	T Cells Promote Metastasis by Regulating Extracellular Matrix Remodeling following Chemotherapy. Cancer Research, 2022, 82, 278-291.	0.4	34
2	Photopharmacological modulation of native CRAC channels using azoboronate photoswitches. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118160119.	3.3	7
3	Long-term Immunogenicity of BNT162b2 Vaccine in Patients With Solid Tumors. JAMA Oncology, 2022, 8, 940.	3.4	2
4	Longitudinal plasma proteomic profiling of patients with non-small cell lung cancer undergoing immune checkpoint blockade. , 2022, 10, e004582.		16
5	Host response to immune checkpoint inhibitors contributes to tumor aggressiveness. , 2021, 9, e001996.		9
6	Metronomic Chemotherapy Modulates Clonal Interactions to Prevent Drug Resistance in Non-Small Cell Lung Cancer. Cancers, 2021, 13, 2239.	1.7	15
7	IL-6 contributes to metastatic switch via the differentiation of monocytic-dendritic progenitors into prometastatic immune cells. , 2021, 9, e002856.		19
8	Six-Month Efficacy and Toxicity Profile of BNT162b2 Vaccine in Cancer Patients with Solid Tumors. Cancer Discovery, 2021, 11, 2430-2435.	7.7	44
9	The multifaceted role of mesenchymal stem cells in cancer. Seminars in Cancer Biology, 2020, 60, 225-237.	4.3	112
10	Elucidating the roles of ASPM isoforms reveals a novel prognostic marker for pancreatic cancer. Journal of Pathology, 2020, 250, 123-125.	2.1	10
11	Microparticles from tumors exposed to radiation promote immune evasion in part by PD-L1. Oncogene, 2020, 39, 187-203.	2.6	34
12	Heparanase and Chemotherapy Synergize to Drive Macrophage Activation and Enhance Tumor Growth. Cancer Research, 2020, 80, 57-68.	0.4	32
13	Breast Cancer-Derived Microparticles Reduce Cancer Cell Adhesion, an Effect Augmented by Chemotherapy. Cells, 2020, 9, 2269.	1.8	5
14	Lung mechanics modifications facilitating metastasis are mediated in part by breast cancerâ€derived extracellular vesicles. International Journal of Cancer, 2020, 147, 2924-2933.	2.3	23
15	Immunostimulatory and anti-tumor metronomic cyclophosphamide regimens assessed in primary orthotopic and metastatic murine breast cancer. Npj Breast Cancer, 2020, 6, 29.	2.3	26
16	Intratumoral HLA-DRâ^'/CD33+/CD11b+ Myeloid-Derived Suppressor Cells Predict Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Frontiers in Oncology, 2020, 10, 1375.	1.3	4
17	The Potential Role of Immune Alteration in the Cancer–COVID19 Equation—A Prospective Longitudinal Study. Cancers, 2020, 12, 2421.	1.7	8

18 IL-31 induces antitumor immunity in breast carcinoma. , 2020, 8, e001010.

9

Yuval Shaked

#	Article	IF	CITATIONS
19	The Dichotomous Role of Bone Marrow Derived Cells in the Chemotherapy-Treated Tumor Microenvironment. Journal of Clinical Medicine, 2020, 9, 3912.	1.0	6
20	Early Cardiac Remodeling Promotes Tumor Growth and Metastasis. Circulation, 2020, 142, 670-683.	1.6	63
21	Significance of host heparanase in promoting tumor growth and metastasis. Matrix Biology, 2020, 93, 25-42.	1.5	21
22	Targeting the Interplay Between Cancer Fibroblasts, Mesenchymal Stem Cells, and Cancer Stem Cells in Desmoplastic Cancers. Frontiers in Oncology, 2019, 9, 688.	1.3	85
23	Metronomic Maintenance Therapy for Rhabdomyosarcoma. Trends in Cancer, 2019, 5, 756-759.	3.8	5
24	Copper oxide nanoparticles inhibit pancreatic tumor growth primarily by targeting tumor initiating cells. Scientific Reports, 2019, 9, 12613.	1.6	66
25	ATF3 and JDP2 deficiency in cancer associated fibroblasts promotes tumor growth via SDF-1 transcription. Oncogene, 2019, 38, 3812-3823.	2.6	23
26	Next Viable Routes to Targeting Pancreatic Cancer Stemness: Learning from Clinical Setbacks. Journal of Clinical Medicine, 2019, 8, 702.	1.0	13
27	Proinflammatory Macrophages Promote Multiple Myeloma Resistance to Bortezomib Therapy. Molecular Cancer Research, 2019, 17, 2331-2340.	1.5	21
28	The pro-tumorigenic host response to cancer therapies. Nature Reviews Cancer, 2019, 19, 667-685.	12.8	135
29	A Unique Crosstalk between Tumor Cells and Hematopoietic Stem Cells Reveals a Myeloid Differentiation Pattern Signature Contributing to Metastasis. Blood, 2019, 134, 2465-2465.	0.6	0
30	Therapy-Educated Mesenchymal Stem Cells Enrich for Tumor-Initiating Cells. Cancer Research, 2018, 78, 1253-1265.	0.4	81
31	A new screening method for ATP-independent kinase inhibitors identifies repurposed anti-cancer drugs. EBioMedicine, 2018, 37, 21-22.	2.7	0
32	Dose- and time-dependence of the host-mediated response to paclitaxel therapy: a mathematical modeling approach. Oncotarget, 2018, 9, 2574-2590.	0.8	7
33	The potential clinical promise of â€~multimodality' metronomic chemotherapy revealed by preclinical studies of metastatic disease. Cancer Letters, 2017, 400, 293-304.	3.2	59
34	Blocking Surgically Induced Lysyl Oxidase Activity Reduces the Risk of Lung Metastases. Cell Reports, 2017, 19, 774-784.	2.9	82
35	CCR5 Directs the Mobilization of CD11b+Gr1+Ly6Clow Polymorphonuclear Myeloid Cells from the Bone Marrow to the Blood to Support Tumor Development. Cell Reports, 2017, 21, 2212-2222.	2.9	83
36	The antiangiogenic role of the pro-inflammatory cytokine interleukin-31. Oncotarget, 2017, 8, 16430-16444.	0.8	24

YUVAL SHAKED

#	Article	IF	CITATIONS
37	Next generation metronomic chemotherapy—report from the Fifth Biennial International Metronomic and Anti-angiogenic Therapy Meeting, 6–8 May 2016, Mumbai. Ecancermedicalscience, 2016, 10, 689.	0.6	10
38	Analysis of the Stromal Cellular Components of the Solid Tumor Microenvironment Using Flow Cytometry. Current Protocols in Cell Biology, 2016, 70, 19.18.1-19.18.12.	2.3	20
39	Bortezomib-induced pro-inflammatory macrophages as a potential factor limiting anti-tumour efficacy. Journal of Pathology, 2016, 239, 262-273.	2.1	24
40	Therapy-activated stromal cells can dictate tumor fate. Journal of Experimental Medicine, 2016, 213, 2831-2833.	4.2	10
41	Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nature Reviews Clinical Oncology, 2016, 13, 611-626.	12.5	103
42	Evidence Implicating Immunological Host Effects in the Efficacy of Metronomic Low-Dose Chemotherapy. Cancer Research, 2016, 76, 5983-5993.	0.4	46
43	Heparanase is required for activation and function of macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7808-E7817.	3.3	85
44	Macrophage-Induced Lymphangiogenesis and Metastasis following Paclitaxel Chemotherapy Is Regulated by VEGFR3. Cell Reports, 2016, 17, 1344-1356.	2.9	88
45	Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes. ACS Nano, 2016, 10, 2028-2045.	7.3	64
46	Proteomics of Microparticles with SILAC Quantification (PROMIS-Quan): A Novel Proteomic Method for Plasma Biomarker Quantification*. Molecular and Cellular Proteomics, 2015, 14, 1127-1136.	2.5	42
47	Blocking IL1β Pathway Following Paclitaxel Chemotherapy Slightly Inhibits Primary Tumor Growth but Promotes Spontaneous Metastasis. Molecular Cancer Therapeutics, 2015, 14, 1385-1394.	1.9	60
48	Host effects contributing to cancer therapy resistance. Drug Resistance Updates, 2015, 19, 33-42.	6.5	38
49	Response letter: "ATF3: A promoter or inhibitor of cardiac maladaptive remodeling― International Journal of Cardiology, 2015, 201, 692.	0.8	4
50	Dequalinium blocks macrophage-induced metastasis following local radiation. Oncotarget, 2015, 6, 27537-27554.	0.8	34
51	Host JDP2 expression in the bone marrow contributes to metastatic spread. Oncotarget, 2015, 6, 37737-37749.	0.8	7
52	ecancermedicalscience. Ecancermedicalscience, 2014, 8, 463.	0.6	26
53	Anti-VEGF-A Affects the Angiogenic Properties of Tumor-Derived Microparticles. PLoS ONE, 2014, 9, e95983.	1.1	13
54	Tumor-derived microparticles induce bone marrow-derived cell mobilization and tumor homing: A process regulated by osteopontin. International Journal of Cancer, 2014, 135, 270-281.	2.3	30

Yuval Shaked

#	Article	IF	CITATIONS
55	Small But Mighty: Microparticles as Mediators of Tumor Progression. Cancer Microenvironment, 2014, 7, 11-21.	3.1	31
56	Anti-Bv8 Antibody and Metronomic Gemcitabine Improve Pancreatic Adenocarcinoma Treatment Outcome Following Weekly Gemcitabine Therapy. Neoplasia, 2014, 16, 501-510.	2.3	60
57	The host immunological response to cancer therapy: An emerging concept in tumor biology. Experimental Cell Research, 2013, 319, 1687-1695.	1.2	21
58	In Vitro Enrichment of Tumorâ€Initiating Cells from Human Established Cell Lines. Current Protocols in Stem Cell Biology, 2013, 24, Unit 3.7.	3.0	10
59	Low-dose metronomic chemotherapy: from past experience to new paradigms in the treatment of cancer. Drug Discovery Today, 2013, 18, 193-201.	3.2	57
60	Lysyl oxidase-like-2 promotes tumour angiogenesis and is a potential therapeutic target in angiogenic tumours. Carcinogenesis, 2013, 34, 2370-2379.	1.3	70
61	Tumor-Initiating Cells of Various Tumor Types Exhibit Differential Angiogenic Properties and React Differently to Antiangiogenic Drugs. Stem Cells, 2012, 30, 1831-1841.	1.4	13
62	G-CSF supplementation with chemotherapy can promote revascularization and subsequent tumor regrowth: prevention by a CXCR4 antagonist. Blood, 2011, 118, 3426-3435.	0.6	58
63	Host Response to Short-term, Single-Agent Chemotherapy Induces Matrix Metalloproteinase-9 Expression and Accelerates Metastasis in Mice. Cancer Research, 2011, 71, 6986-6996.	0.4	102
64	Liver surgery induces an immediate mobilization of progenitor cells in liver cancer patients: A potential role for G-CSF. Cancer Biology and Therapy, 2010, 9, 743-748.	1.5	17
65	The angiogenic profile of colorectal cancer patients following open or laparoscopic colectomy. Cancer Biology and Therapy, 2010, 10, 686-688.	1.5	2
66	Contribution of Granulocyte Colony-Stimulating Factor to the Acute Mobilization of Endothelial Precursor Cells by Vascular Disrupting Agents. Cancer Research, 2009, 69, 7524-7528.	0.4	78
67	Predictive Potential of Angiogenic Growth Factors and Circulating Endothelial Cells in Breast Cancer Patients Receiving Metronomic Chemotherapy Plus Bevacizumab. Clinical Cancer Research, 2009, 15, 7652-7657.	3.2	102
68	Bone marrow derived cells in tumor angiogenesis and growth: are they the good, the bad or the evil?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 1-4.	3.3	26
69	Rapid Chemotherapy-Induced Acute Endothelial Progenitor Cell Mobilization: Implications for Antiangiogenic Drugs as Chemosensitizing Agents. Cancer Cell, 2008, 14, 263-273.	7.7	424
70	Taxanes Induce a Rapid Mobilization of Different Populations of Circulating Endothelial Progenitors by SDF-1 Modulation in Cancer Patients Blood, 2008, 112, 1885-1885.	0.6	0
71	Antiangiogenic Strategies on Defense: On the Possibility of Blocking Rebounds by the Tumor Vasculature after Chemotherapy: Figure 1 Cancer Research, 2007, 67, 7055-7058.	0.4	109
72	Anticancer Therapies Combining Antiangiogenic and Tumor Cell Cytotoxic Effects Reduce the Tumor Stem-Like Cell Fraction in Glioma Xenograft Tumors. Cancer Research, 2007, 67, 3560-3564.	0.4	373

YUVAL SHAKED

#	Article	IF	CITATIONS
73	Highly Efficacious Nontoxic Preclinical Treatment for Advanced Metastatic Breast Cancer Using Combination Oral UFT-Cyclophosphamide Metronomic Chemotherapy. Cancer Research, 2006, 66, 3386-3391.	0.4	218
74	Targeted Anti–Vascular Endothelial Growth Factor Receptor-2 Therapy Leads to Short-term and Long-term Impairment of Vascular Function and Increase in Tumor Hypoxia. Cancer Research, 2006, 66, 3639-3648.	0.4	150
75	Therapy-Induced Acute Recruitment of Circulating Endothelial Progenitor Cells to Tumors. Science, 2006, 313, 1785-1787.	6.0	543
76	The splenic microenvironment is a source of proangiogenesis/inflammatory mediators accelerating the expansion of murine erythroleukemic cells. Blood, 2005, 105, 4500-4507.	0.6	34
77	Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood, 2005, 106, 3058-3061.	0.6	252
78	Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis. Cancer Cell, 2005, 7, 101-111.	7.7	332
79	Cellular and Molecular Surrogate Markers to Monitor Targeted and Non- Targeted Antiangiogenic Drug Activity and Determine Optimal Biologic Dose. Current Cancer Drug Targets, 2005, 5, 551-559.	0.8	48
80	Low-dose Metronomic Combined with Intermittent Bolus-dose Cyclophosphamide Is an Effective Long-term Chemotherapy Treatment Strategy. Cancer Research, 2005, 65, 7045-7051.	0.4	134
81	Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Research, 2003, 63, 4342-6.	0.4	375
82	Bv8 Blockade Sensitizes Anti-PD1 Therapy Resistant Tumors. Frontiers in Immunology, 0, 13, .	2.2	0