
James M Mcdonnell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1934419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a pointâ€ofâ€care test for the detection of MDMA in latent fingerprints using surface plasmon resonance and lateral flow technology. Drug Testing and Analysis, 2022, 14, 613-621.	2.6	3
2	Nucleolin acts as the receptor for C1QTNF4 and supports C1QTNF4-mediated innate immunity modulation. Journal of Biological Chemistry, 2021, 296, 100513.	3.4	13
3	Reviving lost binding sites: Exploring calciumâ€binding site transitions between human and murine CD23. FEBS Open Bio, 2021, 11, 1827-1840.	2.3	2
4	Rapid conjugation of antibodies to toxins to select candidates for the development of anticancer Antibody-Drug Conjugates (ADCs). Scientific Reports, 2020, 10, 8869.	3.3	11
5	NMR backbone assignment of the Cε4 domain of immunoglobulin E. Biomolecular NMR Assignments, 2020, 14, 151-155.	0.8	1
6	Engineering the Fab fragment of the anti-IgE omalizumab to prevent Fab crystallization and permit IgE-Fc complex crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 116-129.	0.8	5
7	Interplay between Affinity and Valency in Effector Cell Degranulation: A Model System with Polcalcin Allergens and Human Patient–Derived IgE Antibodies. Journal of Immunology, 2019, 203, 1693-1700.	0.8	13
8	Vitamin D (1,25(OH)2D3) induces α-1-antitrypsin synthesis by CD4+ T cells, which is required for 1,25(OH)2D3-driven IL-10. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 1-9.	2.5	28
9	Crystal structures of murine and human Histamine-Releasing Factor (HRF/TCTP) and a model for HRF dimerisation in mast cell activation. Molecular Immunology, 2018, 93, 216-222.	2.2	15
10	Deep sequencing of HIV-1 reverse transcripts reveals the multifaceted antiviral functions of APOBEC3G. Nature Microbiology, 2018, 3, 220-233.	13.3	79
11	A Massâ€Spectrometryâ€Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angewandte Chemie, 2018, 130, 17440-17445.	2.0	5
12	A Massâ€5pectrometryâ€Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angewandte Chemie - International Edition, 2018, 57, 17194-17199.	13.8	39
13	Structural basis for selective inhibition of immunoglobulin E-receptor interactions by an anti-IgE antibody. Scientific Reports, 2018, 8, 11548.	3.3	22
14	Allosteric mechanism of action of the therapeutic anti-IgE antibody omalizumab. Journal of Biological Chemistry, 2017, 292, 9975-9987.	3.4	61
15	lgE binds asymmetrically to its B cell receptor CD23. Scientific Reports, 2017, 7, 45533.	3.3	25
16	lgE Trimers Drive SPE-7 Cytokinergic Activity. Scientific Reports, 2017, 7, 8164.	3.3	13
17	Thermal sensitivity and flexibility of the Cε3 domains in immunoglobulin E. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1336-1347.	2.3	10
18	Antibodies and superantibodies in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2017, 139, 1195-1204.e11.	2.9	42

JAMES M MCDONNELL

#	Article	IF	CITATIONS
19	Human immunoglobulin E flexes between acutely bent and extended conformations. Nature Structural and Molecular Biology, 2014, 21, 397-404.	8.2	52
20	Conformational plasticity at the IgE-binding site of the B-cell receptor CD23. Molecular Immunology, 2013, 56, 693-697.	2.2	16
21	Crystal structure of the human IgG4 CH3 dimer reveals the role of Arg409 in the mechanism of Fab-arm exchange. Molecular Immunology, 2013, 54, 1-7.	2.2	39
22	Ca2+-dependent Structural Changes in the B-cell Receptor CD23 Increase Its Affinity for Human Immunoglobulin E. Journal of Biological Chemistry, 2013, 288, 21667-21677.	3.4	27
23	Mapping of the CD23 Binding Site on Immunoglobulin E (IgE) and Allosteric Control of the IgE-FcϵRI Interaction. Journal of Biological Chemistry, 2012, 287, 31457-31461.	3.4	21
24	Soluble CD23 Controls IgE Synthesis and Homeostasis in Human B Cells. Journal of Immunology, 2012, 188, 3199-3207.	0.8	67
25	Crystal structure of IgE bound to its B-cell receptor CD23 reveals a mechanism of reciprocal allosteric inhibition with high affinity receptor Fcl̂µRI. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12686-12691.	7.1	82
26	The CD46-Jagged1 interaction is critical for human TH1 immunity. Nature Immunology, 2012, 13, 1213-1221.	14.5	163
27	Allergen specificity of IgG4-expressing B cells in patients with grass pollen allergy undergoing immunotherapy. Journal of Allergy and Clinical Immunology, 2012, 130, 663-670.e3.	2.9	77
28	Basis of the Intrinsic Flexibility of the CÎ $\mu 3$ Domain of IgE. Biochemistry, 2011, 50, 4608-4614.	2.5	19
29	Understanding Smallâ€Molecule Binding to MDM2: Insights into Structural Effects of Isoindolinone Inhibitors from NMR Spectroscopy. Chemical Biology and Drug Design, 2011, 77, 301-308.	3.2	15
30	Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcɛRI. Nature Structural and Molecular Biology, 2011, 18, 571-576.	8.2	105
31	MDM2-p53 protein–protein interaction inhibitors: A-ring substituted isoindolinones. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5916-9.	2.2	36
32	Isoindolinone Inhibitors of the Murine Double Minute 2 (MDM2)-p53 Proteinâ^'Protein Interaction: Structureâ^'Activity Studies Leading to Improved Potency. Journal of Medicinal Chemistry, 2011, 54, 1233-1243.	6.4	130
33	Structural and Functional Studies on the N-terminal Domain of the Shigella Type III Secretion Protein MxiG. Journal of Biological Chemistry, 2011, 286, 30606-30614.	3.4	30
34	Recombinant Complement Receptor 2 Radiolabeled with [99mTc(CO)3]+ : A Potential New Radiopharmaceutical for Imaging Activated Complement. PLoS ONE, 2011, 6, e18275.	2.5	13
35	Inhibitors of MDM2 and MDMX: a structural perspective. Future Medicinal Chemistry, 2009, 1, 1075-1094.	2.3	29
36	Analysis of Chemical Shift Changes Reveals the Binding Modes of Isoindolinone Inhibitors of the MDM2-p53 Interaction. Journal of the American Chemical Society, 2008, 130, 16038-16044.	13.7	102

JAMES M MCDONNELL

#	Article	IF	CITATIONS
37	Structural and Functional Characterization of a Novel T Cell Receptor Co-regulatory Protein Complex, CD97-CD55. Journal of Biological Chemistry, 2007, 282, 22023-22032.	3.4	60
38	The intrinsic flexibility of IgE and its role in binding FcɛRI. Biomedicine and Pharmacotherapy, 2007, 61, 61-67.	5.6	12
39	Cancer-Associated Glycoforms of Gelatinase B Exhibit a Decreased Level of Binding to Galectin-3â€. Biochemistry, 2006, 45, 15249-15258.	2.5	20
40	Catalytic folding of the Cε3 domain by its high affinity receptor. FEBS Letters, 2006, 580, 2129-2134.	2.8	4
41	Direct analysis of a GPCR-agonist interaction by surface plasmon resonance. European Biophysics Journal, 2006, 35, 709-712.	2.2	37
42	NMR determination that an extended BH3 motif of pro-apoptotic BID is specifically bound to BCL-XL. Magnetic Resonance in Chemistry, 2006, 44, S101-S107.	1.9	7
43	Structural characterization of Ca2+/CaM in complex with the phosphorylase kinase PhK5 peptide. FEBS Journal, 2005, 272, 1511-1522.	4.7	10
44	The Key Role of Protein Flexibility in Modulating IgE Interactions. Journal of Biological Chemistry, 2005, 280, 2324-2330.	3.4	24
45	The structure of human CD23 and its interactions with IgE and CD21. Journal of Experimental Medicine, 2005, 202, 751-760.	8.5	127
46	Using cryoprobes to decrease acquisition times of triple-resonance experiments used for protein resonance assignments. Spectroscopy, 2003, 17, 161-167.	0.8	6
47	Mutagenesis Within Human FcεRIα Differentially Affects Human and Murine IgE Binding. Journal of Immunology, 2002, 168, 1787-1795.	0.8	12
48	Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Current Opinion in Chemical Biology, 2001, 5, 572-577.	6.1	410
49	The structure of the IgE Cepsilon2 domain and its role in stabilizing the complex with its high-affinity receptor FcepsilonRlalpha. Nature Structural Biology, 2001, 8, 437-441.	9.7	73
50	Conformation of the Isolated Cε3 Domain of IgE and Its Complex with the High-Affinity Receptor, FcεRIâ€. Biochemistry, 2000, 39, 7406-7413.	2.5	40
51	Solution Structure of the Proapoptotic Molecule BID. Cell, 1999, 96, 625-634.	28.9	370
52	Solution structure and dynamics of the bioactive retroviral M domain from rous sarcoma virus. Journal of Molecular Biology, 1998, 279, 921-928.	4.2	45
53	Participation of the N-Terminal Region of Cε3 in the Binding of Human IgE to Its High-Affinity Receptor FcεRIâ€. Biochemistry, 1997, 36, 15568-15578.	2.5	71
54	ldentification of Contact Residues in the IgE Binding Site of Human FcεRIαâ€. Biochemistry, 1997, 36, 15579-15588.	2.5	67

#	Article	IF	CITATIONS
55	Solution Structures of FcεRI α-Chain Mimics: A β-Hairpin Peptide and Its Retroenantiomer. Journal of the American Chemical Society, 1997, 119, 5321-5328.	13.7	44
56	Calreticulin Binding Affinity for Glycosylated Laminin. Journal of Biological Chemistry, 1996, 271, 7891-7894.	3.4	40
57	A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis. Nature, 1994, 368, 744-746.	27.8	153
58	Rational design of a peptide analog of the L3T4 CDR3-like region. ImmunoMethods, 1992, 1, 33-39.	0.8	12