Francis Chaouloff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1933982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exercise craving potentiates excitatory inputs to ventral tegmental area dopaminergic neurons. Addiction Biology, 2021, 26, e12967.	1.4	10
2	Cannabis and exercise: Effects of Δ9-tetrahydrocannabinol on preference and motivation for wheel-running in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110117.	2.5	4
3	Subcellular specificity of cannabinoid effects in striatonigral circuits. Neuron, 2021, 109, 1513-1526.e11.	3.8	29
4	The ergogenic impact of the glucocorticoid prednisolone does not translate into increased running motivation in mice. Psychoneuroendocrinology, 2020, 111, 104489.	1.3	3
5	The motivation for exercise over palatable food is dictated by cannabinoid type-1 receptors. JCI Insight, 2019, 4, .	2.3	22
6	Beyond the Activity-Based Anorexia Model: Reinforcing Values of Exercise and Feeding Examined in Stressed Adolescent Male and Female Mice. Frontiers in Pharmacology, 2019, 10, 587.	1.6	13
7	An Operant Conditioning Task to Assess the Choice between Wheel Running and Palatable Food in Mice. Bio-protocol, 2019, 9, e3381.	0.2	1
8	Chemical Proteomics Maps Brain Region Specific Activity of Endocannabinoid Hydrolases. ACS Chemical Biology, 2017, 12, 852-861.	1.6	35
9	Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice. Molecular Psychiatry, 2017, 22, 1594-1603.	4.1	50
10	Running per se stimulates the dendritic arbor of newborn dentate granule cells in mouse hippocampus in a durationâ€dependent manner. Hippocampus, 2016, 26, 282-288.	0.9	21
11	To Stress or Not to Stress: A Question of Models. Current Protocols in Neuroscience, 2015, 70, 8.33.1-8.33.22.	2.6	13
12	Duration- and environment-dependent effects of repeated voluntary exercise on anxiety and cued fear in mice. Behavioural Brain Research, 2015, 282, 1-5.	1.2	10
13	Opposite control of frontocortical 2â€arachidonoylglycerol turnover rate by cannabinoid typeâ€1 receptors located on glutamatergic neurons and on astrocytes. Journal of Neurochemistry, 2015, 133, 26-37.	2.1	9
14	Cannabinoid control of brain bioenergetics: Exploring the subcellular localization of the CB1 receptor. Molecular Metabolism, 2014, 3, 495-504.	3.0	122
15	Studying mitochondrial CB1 receptors: Yes we can. Molecular Metabolism, 2014, 3, 339.	3.0	25
16	Regulation of AMPA receptor surface trafficking and synaptic plasticity by a cognitive enhancer and antidepressant molecule. Molecular Psychiatry, 2013, 18, 471-484.	4.1	65
17	Stress Switches Cannabinoid Type-1 (CB ₁) Receptor-Dependent Plasticity from LTD to LTP in the Bed Nucleus of the Stria Terminalis. Journal of Neuroscience, 2013, 33, 19657-19663.	1.7	44
18	Social stress models in depression research: what do they tell us?. Cell and Tissue Research, 2013, 354, 179-190	1.5	77

#	Article	IF	CITATIONS
19	Ventral Tegmental Area Cannabinoid Type-1 Receptors Control Voluntary Exercise Performance. Biological Psychiatry, 2013, 73, 895-903.	0.7	84
20	Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB ₁ receptor blockade. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4786-4791.	3.3	115
21	Moving bliss: a new anandamide transporter. Nature Neuroscience, 2012, 15, 5-6.	7.1	12
22	Cannabinoid type 1 receptors located on single-minded 1–expressing neurons control emotional behaviors. Neuroscience, 2012, 204, 230-244.	1.1	38
23	Genetic Dissection of the Role of Cannabinoid Type-1 Receptors in the Emotional Consequences of Repeated Social Stress in Mice. Neuropsychopharmacology, 2012, 37, 1885-1900.	2.8	129
24	Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nature Neuroscience, 2012, 15, 558-564.	7.1	450
25	Endocannabinoids and Motor Behavior: CB1 Receptors Also Control Running Activity. Physiology, 2011, 26, 76-77.	1.6	19
26	Temporal modulation of hippocampal excitatory transmission by corticosteroids and stress. Frontiers in Neuroendocrinology, 2011, 32, 25-42.	2.5	33
27	Emotional consequences of wheel running in mice: Which is the appropriate control?. Hippocampus, 2011, 21, 239-242.	0.9	24
28	Bimodal control of stimulated food intake by the endocannabinoid system. Nature Neuroscience, 2010, 13, 281-283.	7.1	246
29	CB1 receptor deficiency decreases wheel-running activity: Consequences on emotional behaviours and hippocampal neurogenesis. Experimental Neurology, 2010, 224, 106-113.	2.0	89
30	Bidirectional regulation of novelty-induced behavioral inhibition by the endocannabinoid system. Neuropharmacology, 2009, 57, 715-721.	2.0	70
31	The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nature Neuroscience, 2008, 11, 868-870.	7.1	240
32	Local facilitation of hippocampal metabotropic glutamate receptor-dependent long-term depression by corticosterone and dexamethasone. Psychoneuroendocrinology, 2008, 33, 686-691.	1.3	19
33	Stress, corticosteroids and excitatory neurotransmission. Future Neurology, 2008, 3, 623-626.	0.9	0
34	Acute Stress Facilitates Hippocampal CA1 Metabotropic Glutamate Receptor-Dependent Long-Term Depression. Journal of Neuroscience, 2007, 27, 7130-7135.	1.7	62
35	The endocannabinoid system in the processing of anxiety and fear and how CB1 receptors may modulate fear extinction. Pharmacological Research, 2007, 56, 367-381.	3.1	122
36	Fox odour affects corticosterone release but not hippocampal serotonin reuptake and open field behaviour in rats. Brain Research, 2003, 961, 166-170.	1.1	21

#	Article	IF	CITATIONS
37	Rat strain differences in peripheral and central serotonin transporter protein expression and function. European Journal of Neuroscience, 2003, 17, 494-506.	1.2	29
38	Effects of 3,4-methylenedioxymethamphetamine on locomotor activity and extracellular dopamine in the nucleus accumbens of Fischer 344 and Lewis rats. Neuroscience Letters, 2003, 335, 212-216.	1.0	6
39	Wistar–Kyoto rats are sensitive to the hypolocomotor and anxiogenic effects of mCPP. Behavioural Pharmacology, 2003, 14, 173-177.	0.8	14
40	Molecular genetic approaches to investigate individual variations in behavioral and neuroendocrine stress responses. Psychoneuroendocrinology, 2002, 27, 563-583.	1.3	82
41	Marker-assisted selection of a neuro-behavioural trait related to behavioural inhibition in the SHR strain, an animal model of ADHD. Genes, Brain and Behavior, 2002, 1, 111-116.	1.1	22
42	Influences of the corticotropic axis and sympathetic activity on neurochemical consequences of 3,4-methylenedioxymethamphetamine (MDMA) administration in Fischer 344 rats. European Journal of Neuroscience, 2002, 16, 607-618.	1.2	22
43	Neurogenetics of emotional reactivity to stress in animals. Dialogues in Clinical Neuroscience, 2002, 4, 368-376.	1.8	4
44	Differential sensitivities to the lethal, but not the neurotoxic, effects of p-chloroamphetamine in inbred rat strains. Neuroscience Letters, 2001, 297, 53-57.	1.0	3
45	Sympathomimetic effects of pindolol in depression. Trends in Pharmacological Sciences, 2001, 22, 554.	4.0	1
46	Réponses corticotropes à un stress intense en fonction de l'entraıÌ,nement chez deux souches de rats. Résultats préliminaires. Science and Sports, 2001, 16, 326-328.	0.2	0
47	Strain-dependent effects of diazepam and the 5-HT2B/2C receptor antagonist SB 206553 in spontaneously hypertensive and Lewis rats tested in the elevated plus-maze. Brazilian Journal of Medical and Biological Research, 2001, 34, 675-682.	0.7	17
48	Relationships between muscle mitochondrial metabolism and stress-induced corticosterone variations in rats. Pflugers Archiv European Journal of Physiology, 2001, 443, 218-226.	1.3	16
49	Genetic Influences On Cardiovascular Responses To An Acoustic Startle Stimulus In Rats. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 1096-1099.	0.9	24
50	Corticotropic and serotonergic responses to acute stress with/without prior exercise training in different rat strains. Acta Physiologica Scandinavica, 2000, 168, 421-430.	2.3	24
51	Serotonin Reuptake Inhibition by Citalopram in Rat Strains Differing for Their Emotionality. Neuropsychopharmacology, 2000, 22, 64-76.	2.8	60
52	Hippocampal and striatal [3H]5-HT reuptake under acute stressors in two rat strains differing for their emotivity. Neuroscience Letters, 2000, 288, 246-248.	1.0	11
53	Strain-dependent neurochemical and neuroendocrine effects of desipramine, but not fluoxetine or imipramine, in Spontaneously Hypertensive and Wistar–Kyoto rats. Neuropharmacology, 2000, 39, 2464-2477.	2.0	25
54	Serotonin, stress and corticoids. Journal of Psychopharmacology, 2000, 14, 139-151.	2.0	273

#	Article	IF	CITATIONS
55	Identification of female-specific QTLs affecting an emotionality-related behavior in rats. Molecular Psychiatry, 1999, 4, 453-462.	4.1	84
56	GR 127935 reduces basal locomotor activity and prevents RU 24969-, but not D -amphetamine-induced hyperlocomotion, in the Wistar-Kyoto Hyperactive (WKHA) rat. Psychopharmacology, 1999, 141, 326-331.	1.5	32
57	Serotonin and Stress. Neuropsychopharmacology, 1999, 21, 28S-32S.	2.8	220
58	Behavioral, neuroendocrine and serotonergic consequences of single social defeat and repeated fluoxetine pretreatment in the Lewis rat strain. Neuroscience, 1999, 92, 327-341.	1.1	120
59	Effects of repeated fluoxetine on anxiety-related behaviours, central serotonergic systems, and the corticotropic axis in SHR and WKY rats. Neuropharmacology, 1999, 38, 893-907.	2.0	125
60	DIFFERENTIAL EFFECTS OF NEONATAL HANDLING ON ANXIETY, CORTICOSTERONE RESPONSE TO STRESS, AND HIPPOCAMPAL GLUCOCORTICOID AND SEROTONIN (5-HT)2A RECEPTORS IN LEWIS RATS. Psychoneuroendocrinology, 1998, 23, 323-335.	1.3	47
61	A genetic and multifactorial analysis of anxiety-related behaviours in Lewis and SHR intercrosses. Behavioural Brain Research, 1998, 96, 195-205.	1.2	92
62	Comparison of the neuroendocrine responses to stress in outbred, inbred and F1 hybrid rats. Life Sciences, 1998, 63, 87-96.	2.0	37
63	CR 127935 and (+)-WAY 100135 do not affect TFMPP-induced inhibition of 5-HT synthesis in the midbrain and hippocampus of Wistar-Kyoto rats. Neuropharmacology, 1998, 37, 1159-1167.	2.0	14
64	Repeated DOI and SR 46349B treatments do not affect elevated plus-maze anxiety despite opposite effects on cortical 5-HT2A receptors. European Journal of Pharmacology, 1997, 334, 25-29.	1.7	15
65	Effects of Food Deprivation on Midbrain 5-HT 1A Autoreceptors in Lewis and SHR Rats. Neuropharmacology, 1997, 36, 483-488.	2.0	9
66	Anxiety- and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light tests. Behavioural Brain Research, 1997, 85, 27-35.	1.2	151
67	A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behavioural Brain Research, 1997, 85, 57-69.	1.2	431
68	Cortical [3H]ketanserin binding and 5-HT2A receptor-mediated inositol phosphate production in the spontaneously hypertensive rat and Lewis rat strains. Neuroscience Letters, 1997, 236, 112-116.	1.0	7
69	Effects of adrenalectomy and corticosterone replacement on diurnal [3H]citalopram binding in rat midbrain. Neuroscience Letters, 1997, 222, 127-131.	1.0	12
70	Differential effects of social stress on central serotonergic activity and emotional reactivity in Lewis and spontaneously hypertensive rats. Neuroscience, 1997, 82, 147-159.	1.1	129
71	Differential effects of restraint stress on hippocampal 5-HT metabolism and extracellular levels of 5-HT in streptozotocin-diabetic rats. Brain Research, 1997, 772, 209-216.	1.1	57
72	Behavioral reactivity to social and nonsocial stimulations: a multivariate analysis of six inbred rat strains. Behavior Genetics, 1997, 27, 155-166.	1.4	108

#	Article	IF	CITATIONS
73	Effects of acute physical exercise on central serotonergic systems. Medicine and Science in Sports and Exercise, 1997, 29, 58-62.	0.2	196
74	Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats. Brain Research, 1996, 740, 245-252.	1.1	137
75	Cerebral tryptophan hydroxylase activity, and 5-HT1A receptor, 5-HT2A receptor, and 5-HT transporter binding in grouped and isolated Roman RHA and RLA rats: relationships with behaviours in two models of anxiety. Psychopharmacology, 1995, 121, 385-395.	1.5	21
76	Cortical [3H]ketanserin binding and 5-HT2A receptor-mediated behavioral responses in obese Zucker rats. Pharmacology Biochemistry and Behavior, 1995, 50, 309-312.	1.3	8
77	Male Fischer 344 and Lewis rats display differences in locomotor reactivity, but not in anxiety-related behaviours: relationship with the hippocampal serotonergic system. Brain Research, 1995, 693, 169-178.	1.1	86
78	Regulation of 5â€HT receptors by corticosteroids: where do we stand?. Fundamental and Clinical Pharmacology, 1995, 9, 219-233.	1.0	99
79	Serotonin _{1C,2} Receptors and Endurance Performance. International Journal of Sports Medicine, 1994, 15, 339-339.	0.8	3
80	Paradoxical differences in animal models of anxiety among the Roman rat lines. Neuroscience Letters, 1994, 182, 217-221.	1.0	44
81	Effects of chlorisondamine and restraint on cortical [3H]ketanserin binding, 5-HT2A receptor-mediated head shakes, and behaviours in models of anxiety. Neuropharmacology, 1994, 33, 449-456.	2.0	32
82	Effects of repeated 2-deoxy-D-glucose administration on ingestive, psychological, and 5-HT-related behaviours in the rat. Neuropharmacology, 1994, 33, 693-703.	2.0	15
83	Glucose, insulin, and open field responses to immobilization in nonobese diabetic (NOD) mice. Physiology and Behavior, 1994, 56, 241-246.	1.0	20
84	Paradoxical influence of treadmill locomotion on 5-HT systems. Trends in Pharmacological Sciences, 1994, 15, 444-445.	4.0	0
85	Influence of physical exercise on 5-HT1A receptor- and anxiety-related behaviours. Neuroscience Letters, 1994, 176, 226-230.	1.0	32
86	Effects of tianeptine on 5-HTP- and dextrofenfluramine-induced hypophagia in the rat. Pharmacology Biochemistry and Behavior, 1993, 44, 989-992.	1.3	4
87	Chronic treatment with an anxiolytic dose of the 5-HT1A agonist ipsapirone does not alter ipsapirone acute neuroendocrine effects. Psychoneuroendocrinology, 1993, 18, 457-466.	1.3	5
88	Psychoneuroendocrine outcomes of short-term crowding stress. Physiology and Behavior, 1993, 54, 767-770.	1.0	17
89	Subchronic treatment with anxiolytic doses of the 5-HT1A receptor agonist ipsapirone does not affect 5-HT2 receptor sensitivity in the rat. European Journal of Pharmacology, 1993, 231, 395-406.	1.7	9
90	Behavioural and biochemical evidence that glucocorticoids are not involved in DOI-elicited 5-HT2 receptor down-regulation. European Journal of Pharmacology, 1993, 249, 117-120.	1.7	22

#	Article	IF	CITATIONS
91	5-HT1C/5-HT2 receptor blockade prevents 1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane-, but not stress-induced increases in brain tryptophan. European Journal of Pharmacology, 1993, 231, 77-82.	1.7	2
92	Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Research Reviews, 1993, 18, 1-32.	9.1	455
93	Corticosterone response to the serotonergic agonist d-fenfluramine may be independent from corticotropin-releasing factor (CRF). Neuroscience Letters, 1993, 156, 121-124.	1.0	6
94	Are 5-HT _{1A} Autoreceptors Involved in the Inhibitory Effect of Ipsapirone on Cold-Elicited Thyrotropin Secretion?. Neuroendocrinology, 1993, 57, 640-647.	1.2	5
95	Differential effects of the novel antidepressant tianeptine on l-5-hydroxytryptophan (5-HTP)-elicited corticosterone release and body weight loss. European Neuropsychopharmacology, 1992, 2, 115-120.	0.3	8
96	Influence of the novel antidepressant tianeptine on neurochemical, neuroendocrinological, and behavioral effects of stress in rats. Biological Psychiatry, 1992, 31, 391-400.	0.7	30
97	Serotonin does not mediate the adrenal catecholamine-releasing effect of acute lithium administration in rats. Psychoneuroendocrinology, 1992, 17, 135-144.	1.3	10
98	The 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl) 2-aminopropane increases brain tryptophan levels in the rat. European Journal of Pharmacology, 1992, 214, 101-103.	1.7	5
99	Mechanisms involved in the hyperglycemic effect of the 5-HT1C/5-HT2 receptor agonist, DOI. European Journal of Pharmacology, 1992, 213, 41-46.	1.7	41
100	Effects of cold stress on some 5-HT1A, 5-HT1C and 5-HT2 receptor-mediated responses. European Journal of Pharmacology, 1992, 219, 261-269.	1.7	17
101	Cardiovascular and adrenaline-releasing effects of the 5-HT1A receptor agonist 8-hydroxy-2-(DI-N-propylamino) tetralin in streptozotocin diabetic rats. Life Sciences, 1991, 48, 2543-2552.	2.0	2
102	Repeated treatment with the 5-HT1A receptor agonist, ipsapirone, does not affect 8-OH-DPAT- and stress-induced increases in plasma adrenaline levels in the rat. European Journal of Pharmacology, 1991, 198, 129-135.	1.7	14
103	Buspirone, ipsapirone and 1-(2-pyrimidinyl)-piperazine decrease cold-induced thyrotropin secretion in rats. European Journal of Pharmacology, 1991, 204, 141-147.	1.7	3
104	Influence of catecholaminergic and serotonergic receptor antagonists on the hyperglycaemic response to the neuroglucopaenic agent, 2-deoxy-d-glucose. Neuropharmacology, 1991, 30, 599-605.	2.0	2
105	Influence of 5-HT ₁ and 5-HT ₂ Receptor Antagonists on Insulin-Induced Adrenomedullary Catecholamine Release. Neuroendocrinology, 1991, 54, 639-645.	1.2	11
106	Evidence that 5-HT1A receptors are involved in the adrenaline-releasing effects of 8-OH-DPAT in the conscious rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 341, 381-4.	1.4	38
107	Determination of cerebrospinal fluid production rate using a pushâ€pull perfusion procedure in the conscious rat. Fundamental and Clinical Pharmacology, 1990, 4, 269-274.	1.0	15
108	Ganglionic transmission is a prerequisite for the adrenaline-releasing and hyperglycemic effects of 8-OH-DPAT. European Journal of Pharmacology, 1990, 185, 11-18.	1.7	47

#	Article	IF	CITATIONS
109	Effects of the 5-HT1C/5-HT2 receptor agonists DOI and α-methyl-5-HT on plasma glucose and insulin levels in the rat. European Journal of Pharmacology, 1990, 187, 435-443.	1.7	62
110	Evidence that the 5-HT1A receptor agonists buspirone and ipsapirone activate adrenaline release in the conscious rat. European Journal of Pharmacology, 1990, 177, 107-110.	1.7	40
111	Pentobarbital anaesthesia prevents the adrenaline-releasing effect of the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin. European Journal of Pharmacology, 1990, 180, 175-178.	1.7	13
112	In vivo evidence that insulin does not inhibit hepatic tryptophan pyrrolase activity in rats. Biochemical Pharmacology, 1990, 40, 759-763.	2.0	3
113	Relationships between plasma tryptophan and brain tryptophan, and consequences on CNS serotonin metabolism in the exercising rat. , 1990, , 359-363.		0
114	Antagonism by Ketanserin of 8-OH-DPAT-Induced Vasoconstriction. Cephalalgia, 1989, 9, 43-44.	1.8	0
115	Duration of Streptozotocin Diabetes Influences the Response of Hypothalamic Serotonin Metabolism to Immobilization Stress. Neuroendocrinology, 1989, 50, 344-350.	1.2	17
116	About the effect of L-tryptophan on exercise performance: lacunae and pitfalls. International Journal of Sports Medicine, 1989, 10, 383-383.	0.8	3
117	Dextrofenfluramine, but not 8-OH-DPAT affects the decrease in food consumed by rats submitted to physical exercise. Pharmacology Biochemistry and Behavior, 1989, 32, 573-576.	1.3	11
118	Physical exercise: evidence for differential consequences of tryptophan on 5-HT synthesis and metabolism in central serotonergic cell bodies and terminals. Journal of Neural Transmission, 1989, 78, 121-130.	1.4	78
119	Physical exercise and brain monoamines: a review. Acta Physiologica Scandinavica, 1989, 137, 1-13.	2.3	292
120	COMPARATIVE PHARMACOKINETICS OF d―AND lâ€ALPHAMETHYLDOPA IN PLASMA, AQUEOUS HUMOR, AND CEREBROSPINAL FLUID IN RABBITS. Fundamental and Clinical Pharmacology, 1988, 2, 283-293.	1.0	5
121	Hyperinsulinemia of the genetically obese (fa/fa) rat is decreased by a low dose of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). European Journal of Pharmacology, 1988, 147, 111-118.	1.7	19
122	Feeding responses to a high dose of 8-OH-DPAT in young and adult rats: influence of food texture. European Journal of Pharmacology, 1988, 151, 267-273.	1.7	18
123	Amphetamine and α-methyl-p-tyrosine affect the exercise-induced imbalance between the availability of tryptophan and synthesis of serotonin in the brain of the rat. Neuropharmacology, 1987, 26, 1099-1106.	2.0	79
124	Female rats are more vulnerable than males in an animal model of depression: the possible role of serotonin. Brain Research, 1986, 382, 416-421.	1.1	278
125	Motor Activity Increases Tryptophan, 5-Hydroxyindoleacetic Acid, and Homovanillic Acid in Ventricular Cerebrospinal Fluid of the Conscious Rat. Journal of Neurochemistry, 1986, 46, 1313-1316.	2.1	88
126	Amino Acid Analysis Demonstrates that Increased Plasma Free Tryptophan Causes the Increase of Brain Tryptophan During Exercise in the Rat. Journal of Neurochemistry, 1986, 46, 1647-1650.	2.1	114

#	Article	IF	CITATIONS
127	Peripheral and central short-term effects of fusaric acid, a DBH inhibitor, on tryptophan and serotonin metabolism in the rat. Journal of Neural Transmission, 1986, 65, 219-232.	1.4	16
128	Effects of conditioned running on plasma, liver and brain tryptophan and on brain 5â€hydroxytryptamine metabolism of the rat. British Journal of Pharmacology, 1985, 86, 33-41.	2.7	143
129	Tryptophan and serotonin turnover rate in the brain of genetically hyperammonemic mice. Neurochemistry International, 1985, 7, 143-153.	1.9	26
130	Fusaric acid-induced elevation of homovanillic acid in the CSF as an index of brain noradrenaline synthesis. European Journal of Pharmacology, 1985, 117, 363-367.	1.7	3