ShinYoung Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1933682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colloidal quantum dot based infrared detectors: extending to the mid-infrared and moving from the lab to the field. Journal of Materials Chemistry C, 2022, 10, 790-804.	5.5	21
2	Hydrogen Storage Performance of Preferentially Oriented Mg/rGO Hybrids. Chemistry of Materials, 2022, 34, 2963-2971.	6.7	8
3	Understanding Hydrogenation Chemistry at MgB ₂ Reactive Edges from <i>Ab Initio</i> Molecular Dynamics. ACS Applied Materials & Interfaces, 2022, 14, 20430-20442.	8.0	4
4	Enhancement of effective thermal conductivity of rGO/Mg nanocomposite packed beds. International Journal of Heat and Mass Transfer, 2022, 192, 122891.	4.8	8
5	Heteroatom-Doped Graphenes as Actively Interacting 2D Encapsulation Media for Mg-Based Hydrogen Storage. ACS Applied Materials & Interfaces, 2022, 14, 20823-20834.	8.0	19
6	Flexible machine-learning interatomic potential for simulating structural disordering behavior of Li7La3Zr2O12 solid electrolytes. Journal of Chemical Physics, 2022, 156, .	3.0	8
7	Chemomechanical effect of reduced graphene oxide encapsulation on hydrogen storage performance of Pd nanoparticles. Journal of Materials Chemistry A, 2021, 9, 11641-11650.	10.3	6
8	Spontaneous dynamical disordering of borophenes in MgB2 and related metal borides. Nature Communications, 2021, 12, 6268.	12.8	14
9	A Mechanistic Analysis of Phase Evolution and Hydrogen Storage Behavior in Nanocrystalline Mg(BH ₄) ₂ within Reduced Graphene Oxide. ACS Nano, 2020, 14, 1745-1756.	14.6	29
10	Fully Exploited Oxygen Redox Reaction by the Interâ€Diffused Cations in Coâ€Free Liâ€Rich Materials for High Performance Liâ€Ion Batteries. Advanced Science, 2020, 7, 2001658.	11.2	17
11	Beyond Idealized Models of Nanoscale Metal Hydrides for Hydrogen Storage. Industrial & Engineering Chemistry Research, 2020, 59, 5786-5796.	3.7	15
12	Understanding the effects of oxygen defects on the redox reaction pathways in LiVPO ₄ F by combining <i>ab initio</i> calculations with experiments. Journal of Materials Chemistry A, 2019, 7, 13060-13070.	10.3	7
13	Morphologyâ€Đependent Stability of Complex Metal Hydrides and Their Intermediates Using Firstâ€Principles Calculations. ChemPhysChem, 2019, 20, 1340-1347.	2.1	11
14	Edge-Functionalized Graphene Nanoribbon Encapsulation To Enhance Stability and Control Kinetics of Hydrogen Storage Materials. Chemistry of Materials, 2019, 31, 2960-2970.	6.7	26
15	An Analytical Bond Order Potential for Mgâ^H Systems. ChemPhysChem, 2019, 20, 1404-1411.	2.1	3
16	Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-Doped NaAlH ₄ . ACS Applied Materials & Interfaces, 2019, 11, 4930-4941.	8.0	19
17	Nanostructured Metal Hydrides for Hydrogen Storage. Chemical Reviews, 2018, 118, 10775-10839.	47.7	461
18	Understanding Charge Transfer at Mg/MgH ₂ Interfaces for Hydrogen Storage. ECS Transactions, 2017, 77, 81-90.	0.5	6

2

SHINYOUNG KANG

#	Article	IF	CITATIONS
19	Hierarchically Controlled Insideâ€Out Doping of Mg Nanocomposites for Moderate Temperature Hydrogen Storage. Advanced Functional Materials, 2017, 27, 1704316.	14.9	72
20	Elucidating the mechanism of MgB ₂ initial hydrogenation via a combined experimental–theoretical study. Physical Chemistry Chemical Physics, 2017, 19, 22646-22658.	2.8	23
21	The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nature Chemistry, 2016, 8, 692-697.	13.6	1,022
22	Nanoscale Stabilization of Sodium Oxides: Implications for Na–O ₂ Batteries. Nano Letters, 2014, 14, 1016-1020.	9.1	162
23	A Facile Mechanism for Recharging Li ₂ O ₂ in Li–O ₂ Batteries. Chemistry of Materials, 2013, 25, 3328-3336.	6.7	179
24	Intrinsic stoichiometry and oxygen-induced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi>-type conductivity of pyrite FeS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:math /><mml:mn>2</mml:mn></mml:math </mml:msub>. Physical Review B, 2011, 84, .</mml:math </mml:math 	3.2	65