Sreeganga S Chandra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1933378/publications.pdf Version: 2024-02-01

SPEECANCA S CHANDRA

#	Article	IF	CITATIONS
1	\hat{I}_{\pm} -Synuclein Cooperates with CSP \hat{I}_{\pm} in Preventing Neurodegeneration. Cell, 2005, 123, 383-396.	13.5	895
2	A Broken α-Helix in Folded α-Synuclein. Journal of Biological Chemistry, 2003, 278, 15313-15318.	1.6	453
3	Double-knockout mice for Â- and Â-synucleins: Effect on synaptic functions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14966-14971.	3.3	392
4	αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19573-19578.	3.3	261
5	Synucleins Regulate the Kinetics of Synaptic Vesicle Endocytosis. Journal of Neuroscience, 2014, 34, 9364-9376.	1.7	237
6	Glucosylsphingosine Promotes α-Synuclein Pathology in Mutant GBA-Associated Parkinson's Disease. Journal of Neuroscience, 2017, 37, 9617-9631.	1.7	180
7	Functional Alterations to the Nigrostriatal System in Mice Lacking All Three Members of the Synuclein Family. Journal of Neuroscience, 2011, 31, 7264-7274.	1.7	158
8	Monomeric Synucleins Generate Membrane Curvature. Journal of Biological Chemistry, 2013, 288, 1829-1840.	1.6	158
9	Synucleins Have Multiple Effects on Presynaptic Architecture. Cell Reports, 2017, 18, 161-173.	2.9	120
10	The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease. Frontiers in Neuroscience, 2017, 11, 248.	1.4	103
11	Role of the endolysosomal system in Parkinson's disease. Journal of Neurochemistry, 2019, 150, 487-506.	2.1	98
12	Identification of CSPα Clients Reveals a Role in Dynamin 1 Regulation. Neuron, 2012, 74, 136-150.	3.8	78
13	Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathologica, 2016, 131, 621-637.	3.9	71
14	Hsp110 mitigates α-synuclein pathology in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24310-24316.	3.3	44
15	Oligomerization of Cysteine String Protein alpha mutants causing adult neuronal ceroid lipofuscinosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2136-2146.	1.8	32
16	Identification of substrates of palmitoyl protein thioesterase 1Âhighlights roles of depalmitoylation in disulfide bond formation and synaptic function. PLoS Biology, 2022, 20, e3001590.	2.6	19
17	A Drosophila model of neuronal ceroid lipofuscinosis CLN4 reveals a hypermorphic gain of function mechanism. ELife, 2019, 8, .	2.8	14
18	A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data. Briefings in Bioinformatics, 2022, 23, .	3.2	3