Carlos Quental

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1933228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multibody modelling of the foot for the biomechanical analysis of the ankle joint during running: A narrative review. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2022, 236, 338-353.	0.8	3
2	Metaphyseal sleeves in revision total knee arthroplasties: Computational analysis of bone remodeling. Knee, 2022, 37, 10-19.	1.6	4
3	Contact patterns in the ankle joint after lateral ligamentous injury during internal rotation: A computational study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2021, 235, 82-88.	1.8	3
4	Proximal and mid-thigh fascia lata graft constructs used for arthroscopic superior capsule reconstruction show equivalent biomechanical properties: an inÂvitro human cadaver study. JSES International, 2021, 5, 439-446.	1.6	5
5	Influence of the PFNA screw position on the risk of cut-out in an unstable intertrochanteric fracture: a computational analysis. Medical Engineering and Physics, 2021, 97, 70-76.	1.7	5
6	Shoulder Positioning during Superior Capsular Reconstruction: Computational Analysis of Graft Integrity and Shoulder Stability. Biology, 2021, 10, 1263.	2.8	3
7	Stress analysis in a bone fracture fixed with topology-optimised plates. Biomechanics and Modeling in Mechanobiology, 2020, 19, 693-699.	2.8	19
8	Primary stability analysis of stemless shoulder implants. Medical Engineering and Physics, 2020, 81, 22-29.	1.7	17
9	Comparison of 3 supraspinatus tendon repair techniques – a 3D computational finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 1387-1394.	1.6	3
10	Bone adaptation impact of stemless shoulder implants: a computational analysis. Journal of Shoulder and Elbow Surgery, 2019, 28, 1886-1896.	2.6	32
11	Influence of the Musculotendon Dynamics on the Muscle Force-Sharing Problem of the Shoulder—A Fully Inverse Dynamics Approach. Journal of Biomechanical Engineering, 2018, 140, .	1.3	13
12	Bone remodelling of the humerus after a resurfacing and a stemless shoulder arthroplasty. Clinical Biomechanics, 2018, 59, 78-84.	1.2	15
13	Computational design and fabrication of a novel bioresorbable cage for tibial tuberosity advancement application. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 344-355.	3.1	15
14	A new shoulder model with a biologically inspired glenohumeral joint. Medical Engineering and Physics, 2016, 38, 969-977.	1.7	16
15	Full-thickness tears of the supraspinatus tendon: A three-dimensional finite element analysis. Journal of Biomechanics, 2016, 49, 3962-3970.	2.1	19
16	A window moving inverse dynamics optimization for biomechanics of motion. Multibody System Dynamics, 2016, 38, 157-171.	2.7	21
17	A simple controller to overcome the lack of correlation between forward and inverse dynamic analysis of human motion tasks. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2016, 230, 350-367.	0.8	0
18	Computational reverse shoulder prosthesis model: Experimental data and verification. Journal of Biomechanics, 2015, 48, 3242-3251.	2.1	5

CARLOS QUENTAL

#	Article	IF	CITATIONS
19	Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 749-759.	1.6	31
20	Computational analysis of polyethylene wear in anatomical and reverse shoulder prostheses. Medical and Biological Engineering and Computing, 2015, 53, 111-122.	2.8	15
21	Subject-specific bone remodelling of the scapula. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 1129-1143.	1.6	8
22	Bone remodelling of the scapula after a total shoulder arthroplasty. Biomechanics and Modeling in Mechanobiology, 2014, 13, 827-838.	2.8	13
23	Multibody System of the Upper Limb Including a Reverse Shoulder Prosthesis. Journal of Biomechanical Engineering, 2013, 135, 111005.	1.3	18
24	BONE REMODELLING ANALYSIS OF THE SCAPULA. Journal of Biomechanics, 2012, 45, S118.	2.1	0
25	Bone remodelling analysis of the humerus after a shoulder arthroplasty. Medical Engineering and Physics, 2012, 34, 1132-1138.	1.7	26
26	A multibody biomechanical model of the upper limb including the shoulder girdle. Multibody System Dynamics, 2012, 28, 83-108.	2.7	58
27	Dynamics of the Upper Limb with a Detailed Model for the Shoulder. , 2012, , 413-420.		0
28	Multibody biomechanical models of the upper limb. Procedia IUTAM, 2011, 2, 4-17.	1.2	22