
Rafael Guillén-Bejarano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1932948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of date seed oil extraction using the assistance of hydrothermal and ultrasound technologies. Grasas Y Aceites, 2022, 73, e457.	0.3	5
2	Date Seeds: A Promising Source of Oil with Functional Properties. Foods, 2020, 9, 787.	1.9	66
3	Hydrothermal treatments enhance the solubility and antioxidant characteristics of dietary fiber from asparagus by-products. Food and Bioproducts Processing, 2019, 114, 175-184.	1.8	16
4	Nutritional composition and antioxidant activity of different walnut varieties (Juglans) Tj ETQq0 0 0 rg 70, 310.	gBT /Overl 0.3	ock 10 Tf 50 6 4
5	In Vitro Toxicity of Asparagus Saponins in Distinct Multidrug-Resistant Colon Cancer Cells. Chemistry and Biodiversity, 2018, 15, e1800282.	1.0	12
6	Saponin Profile of Wild Asparagus Species. Journal of Food Science, 2017, 82, 638-646.	1.5	23
7	The phytochemical and bioactivity profiles of wild Asparagus albus L. plant. Food Research International, 2017, 99, 720-729.	2.9	25
8	Enzymatic conversion of date fruit fiber concentrates into a new product enriched in antioxidant soluble fiber. LWT - Food Science and Technology, 2017, 75, 727-734.	2.5	29
9	Saponins from edible spears of wild asparagus inhibit AKT, p70S6K, and ERK signalling, and induce apoptosis through G0/G1 cell cycle arrest in human colon cancer HCT-116 cells. Journal of Functional Foods, 2016, 26, 1-10.	1.6	47
10	Quality Characteristics and Antioxidant Properties of Muffins Enriched with Date Fruit (<i>Phoenix) Tj ETQq0 0 0</i>) rgBT /Ov 1.4	erlock 10 Tf 5 21
11	Valorization of Tunisian secondary date varieties (Phoenix dactylifera L.) by hydrothermal treatments: New fiber concentrates with antioxidant properties. LWT - Food Science and Technology, 2015, 60, 518-524.	2.5	32
12	Cell Wall Bound Anionic Peroxidases from Asparagus Byproducts. Journal of Agricultural and Food Chemistry, 2014, 62, 9644-9650.	2.4	1
13	Asparagus Byproducts as a New Source of Peroxidases. Journal of Agricultural and Food Chemistry, 2013, 61, 6167-6174.	2.4	10
14	Saponin Profile of Green Asparagus Genotypes. Journal of Agricultural and Food Chemistry, 2013, 61, 11098-11108.	2.4	21
15	Optimization of a Method for the Profiling and Quantification of Saponins in Different Green Asparagus Genotypes. Journal of Agricultural and Food Chemistry, 2013, 61, 6250-6258.	2.4	30
16	Bioactive Constituents from "Triguero―Asparagus Improve the Plasma Lipid Profile and Liver Antioxidant Status in Hypercholesterolemic Rats. International Journal of Molecular Sciences, 2013, 14, 21227-21239.	1.8	18
17	Dietary Fiber from Tunisian Common Date Cultivars (Phoenix dactylifera L.): Chemical Composition, Functional Properties, and Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 2012, 60, 3658-3664.	2.4	52
18	The Flavonol Isorhamnetin Exhibits Cytotoxic Effects on Human Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 10869-10875.	2.4	88

#	Article	IF	CITATIONS
19	3,4-Dihydroxyphenylglycol (DHPG): An Important Phenolic Compound Present in Natural Table Olives. Journal of Agricultural and Food Chemistry, 2009, 57, 6298-6304.	2.4	29
20	Olive stone an attractive source of bioactive and valuable compounds. Bioresource Technology, 2008, 99, 5261-5269.	4.8	274
21	Effect of Steam Treatment of Alperujo on the Composition, Enzymatic Saccharification, and in Vitro Digestibility of Alperujo. Journal of Agricultural and Food Chemistry, 2007, 55, 136-142.	2.4	31
22	Identification of Flavonoid Diglycosides in Several Genotypes of Asparagus from the Huétor-TÃijar Population Variety. Journal of Agricultural and Food Chemistry, 2007, 55, 10028-10035.	2.4	38
23	Effects of storage conditions on the accumulation of ferulic acid derivatives in white asparagus cell walls. Journal of the Science of Food and Agriculture, 2007, 87, 286-296.	1.7	39
24	Antioxidant activity of effluents during the purification of hydroxytyrosol and 3,4-dihydroxyphenyl glycol from olive oil waste. European Food Research and Technology, 2007, 224, 733-741.	1.6	54
25	Dietary fibre from vegetable products as source of functional ingredients. Trends in Food Science and Technology, 2006, 17, 3-15.	7.8	393
26	Culture Conditions Determine the Balance between Two Different Exopolysaccharides Produced by Lactobacillus pentosus LPS26. Applied and Environmental Microbiology, 2006, 72, 7495-7502.	1.4	68
27	Extraction of interesting organic compounds from olive oil waste. Grasas Y Aceites, 2006, 57, .	0.3	88
28	Cell wall phenolics of white and green asparagus. Journal of the Science of Food and Agriculture, 2005, 85, 971-978.	1.7	28
29	Antioxidant Activity of Ethanolic Extracts from Several Asparagus Cultivars. Journal of Agricultural and Food Chemistry, 2005, 53, 5212-5217.	2.4	98
30	Mechanical properties of white and green asparagus: changes related to modifications of cell wall components. Journal of the Science of Food and Agriculture, 2004, 84, 1478-1486.	1.7	36
31	Total Recovery of the Waste of Two-Phase Olive Oil Processing:Â Isolation of Added-Value Compounds. Journal of Agricultural and Food Chemistry, 2004, 52, 5849-5855.	2.4	71
32	Production in Large Quantities of Highly Purified Hydroxytyrosol from Liquidâ^'Solid Waste of Two-Phase Olive Oil Processing or "Alperujo― Journal of Agricultural and Food Chemistry, 2002, 50, 6804-6811.	2.4	170
33	Olive Fruit Cell Wall:Â Degradation of Pectic Polysaccharides during Ripening. Journal of Agricultural and Food Chemistry, 2001, 49, 409-415.	2.4	51
34	Olive Fruit Cell Wall:Â Degradation of Cellulosic and Hemicellulosic Polysaccharides during Ripening. Journal of Agricultural and Food Chemistry, 2001, 49, 2008-2013.	2.4	22
35	Effect of dressings "(aliños)" on olive texture: cellulase, polygalacturonase and glycosidase activities of garlic and lemon present in brines. European Food Research and Technology, 2001, 212, 465-468.	1.6	7
36	Dietary fibre content of table olives processed under different European styles: study of physico-chemical characteristics. Journal of the Science of Food and Agriculture, 2000, 80, 1903-1908.	1.7	41

Rafael Guillén-Bejarano

#	Article	IF	CITATIONS
37	Cell wall polysaccharides implied in green olive behaviour during the pitting process. European Food Research and Technology, 2000, 211, 181-184.	1.6	3
38	Postharvest Changes in White Asparagus Cell Wall during Refrigerated Storage. Journal of Agricultural and Food Chemistry, 1999, 47, 3551-3557.	2.4	33
39	Turnover of White Asparagus Cell Wall Polysaccharides during Postharvest Storage. Journal of Agricultural and Food Chemistry, 1999, 47, 4525-4531.	2.4	13
40	Solubilization of Cell Wall Polysaccharides from Olive Fruits into Treatment Liquids during Spanish Green Olive Processing. Journal of Agricultural and Food Chemistry, 1998, 46, 4376-4381.	2.4	12
41	Degradation of Pectic Polysaccharides in Pickled Green Olives. Journal of Food Protection, 1998, 61, 78-86.	0.8	13
42	Degradation of Hemicellulosic and Cellulosic Polysaccharides in Pickled Green Olives. Journal of Food Protection, 1998, 61, 87-93.	0.8	12
43	Correlation between Soaking Conditions, Cation Content of Cell Wall, and Olive Firmness during "Spanish Green Olive―Processing. Journal of Agricultural and Food Chemistry, 1997, 45, 1653-1658.	2.4	34
44	Factors Affecting the "Spanish Green Olive―Process: Their Influence on Final Texture and Industrial Losses. Journal of Agricultural and Food Chemistry, 1997, 45, 4065-4070.	2.4	16
45	Molecular Weight and Ionic Characteristics of Olive Cell Wall Polysaccharides during Processing. Journal of Agricultural and Food Chemistry, 1996, 44, 913-918.	2.4	16
46	Effect of the temperature of extraction on the composition of cell wall polysaccharides in olives. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 228-232.	0.7	1
47	Improved protocol for the formation of N-(p-nitrobenzyloxy)aminoalditol derivatives of oligosaccharides. Carbohydrate Research, 1996, 282, 1-12.	1.1	24
48	Metabolism of xyloglucan generates xylose-deficient oligosaccharide subunits of this polysaccharide in etiolated peas. Carbohydrate Research, 1995, 277, 291-311.	1.1	33
49	Activity of cell wall-associated enzymes in ripening olive fruit. Physiologia Plantarum, 1995, 93, 651-658.	2.6	32
50	Changes in Texture and Cell Wall Polysaccharides of Olive Fruit during "Spanish Green Olive" Processing. Journal of Agricultural and Food Chemistry, 1995, 43, 2240-2246.	2.4	49
51	Structure and function studies of plant cell wall polysaccharides. Biochemical Society Transactions, 1994, 22, 374-378.	1.6	80
52	Cell Wall Composition of Olives. Journal of Food Science, 1994, 59, 1192-1196.	1.5	34
53	Structural analysis of tamarind seed xyloglucan oligosaccharides using β-galactosidase digestion and spectroscopic methods. Carbohydrate Research, 1993, 248, 285-301.	1.1	118
54	Activity of glycosidases during development and ripening of olive fruit. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 196, 147-151.	0.7	30

#	Article	IF	CITATIONS
55	Fibre fraction carbohydrates in Olea europaea (Gordal and Manzanilla var.). Food Chemistry, 1992, 44, 173-178.	4.2	32
56	Cellulase inhibition by polyphenols in olive fruits. Food Chemistry, 1990, 38, 69-73.	4.2	13
57	Inhibitors of cellulolytic activity in olive fruits (Olea europaea, Hojiblanca var.). Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1989, 189, 216-218.	0.7	8