
Richard B Silverman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1932851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inducible nitric oxide synthase: Regulation, structure, and inhibition. Medicinal Research Reviews, 2020, 40, 158-189.	5.0	397
2	[10] Mechanism-based enzyme inactivators. Methods in Enzymology, 1995, 249, 240-283.	0.4	306
3	Radical Ideas about Monoamine Oxidase. Accounts of Chemical Research, 1995, 28, 335-342.	7.6	252
4	Potent and Selective Inhibition of Neuronal Nitric Oxide Synthase byNï‰-Propyl-l-arginine. Journal of Medicinal Chemistry, 1997, 40, 3869-3870.	2.9	185
5	The Sirtuin 2 Inhibitor AK-7 Is Neuroprotective in Huntington's Disease Mouse Models. Cell Reports, 2012, 2, 1492-1497.	2.9	174
6	Design, Synthesis, and Biological Activity of a Difluoro-Substituted, Conformationally Rigid Vigabatrin Analogue as a Potent γ-Aminobutyric Acid Aminotransferase Inhibitor. Journal of Medicinal Chemistry, 2003, 46, 5292-5293.	2.9	165
7	From Basic Science to Blockbuster Drug: The Discovery of Lyrica. Angewandte Chemie - International Edition, 2008, 47, 3500-3504.	7.2	139
8	CaV1.3-selective L-type calcium channel antagonists as potential new therapeutics for Parkinson's disease. Nature Communications, 2012, 3, 1146.	5.8	139
9	Structures of γ-Aminobutyric Acid (GABA) Aminotransferase, a Pyridoxal 5′-Phosphate, and [2Fe-2S] Cluster-containing Enzyme, Complexed with γ-Ethynyl-GABA and with the Antiepilepsy Drug Vigabatrin. Journal of Biological Chemistry, 2004, 279, 363-373.	1.6	129
10	Syntheses of (S)-5-substituted 4-aminopentanoic acids: a new class of .gammaaminobutyric acid transaminase inactivators. Journal of Organic Chemistry, 1980, 45, 815-818.	1.7	127
11	Target- and Mechanism-Based Therapeutics for Neurodegenerative Diseases: Strength in Numbers. Journal of Medicinal Chemistry, 2013, 56, 3121-3147.	2.9	121
12	Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chemical Society Reviews, 2014, 43, 6814-6838.	18.7	121
13	Design of Selective Neuronal Nitric Oxide Synthase Inhibitors for the Prevention and Treatment of Neurodegenerative Diseases. Accounts of Chemical Research, 2009, 42, 439-451.	7.6	118
14	A New Class of Conformationally Rigid Analogues of 4-Amino-5-halopentanoic Acids, Potent Inactivators of γ-Aminobutyric Acid Aminotransferase. Journal of Medicinal Chemistry, 2000, 43, 706-720.	2.9	114
15	The Sirtuin-2 Inhibitor AK7 Is Neuroprotective in Models of Parkinson's Disease but Not Amyotrophic Lateral Sclerosis and Cerebral Ischemia. PLoS ONE, 2015, 10, e0116919.	1.1	106
16	Revisiting Heme Mechanisms. A Perspective on the Mechanisms of Nitric Oxide Synthase (NOS), Heme Oxygenase (HO), and Cytochrome P450s (CYP450s). Biochemistry, 2008, 47, 2231-2243.	1.2	105
17	Minimal Pharmacophoric Elements and Fragment Hopping, an Approach Directed at Molecular Diversity and Isozyme Selectivity. Design of Selective Neuronal Nitric Oxide Synthase Inhibitors. Journal of the American Chemical Society, 2008, 130, 3900-3914.	6.6	101
18	Mechanisms of inactivation of .gammaaminobutyric acid aminotransferase by the antiepilepsy drug .gammavinyl GABA (vigabatrin). Journal of the American Chemical Society, 1991, 113, 9341-9349.	6.6	96

#	Article	IF	CITATIONS
19	3-Alkyl-4-aminobutyric acids: the first class of anticonvulsant agents that activates L-glutamic acid decarboxylase. Journal of Medicinal Chemistry, 1991, 34, 2295-2298.	2.9	95
20	3-Alkyl GABA and 3-alkylglutamic acid analogues: two new classes of anticonvulsant agents. Epilepsy Research, 1992, 11, 103-110.	0.8	91
21	Discovery of Highly Potent and Selective Inhibitors of Neuronal Nitric Oxide Synthase by Fragment Hopping. Journal of Medicinal Chemistry, 2009, 52, 779-797.	2.9	86
22	Mechanism of inactivation of monoamine oxidase by 1-phenylcyclopropylamine. Biochemistry, 1985, 24, 2128-2138.	1.2	79
23	Design of potential anticonvulsant agents: mechanistic classification of GABA aminotransferase inactivators. Journal of Medicinal Chemistry, 1989, 32, 2413-2421.	2.9	79
24	Selective neuronal nitric oxide synthase inhibitors and the prevention of cerebral palsy. Annals of Neurology, 2009, 65, 209-217.	2.8	78
25	A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson's disease. Science Translational Medicine, 2019, 11, .	5.8	77
26	Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase. Nature Structural and Molecular Biology, 2004, 11, 54-59.	3.6	75
27	Nï‰-Nitroarginine-Containing Dipeptide Amides. Potent and Highly Selective Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry, 1999, 42, 3147-3153.	2.9	74
28	Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain, 2015, 138, 3221-3237.	3.7	74
29	Microsporins A and B: new histone deacetylase inhibitors from the marine-derived fungus Microsporum cf. gypseum and the solid-phase synthesis of microsporin A. Tetrahedron, 2007, 63, 6535-6541.	1.0	71
30	Computer Modeling of Selective Regions in the Active Site of Nitric Oxide Synthases:  Implication for the Design of Isoform-Selective Inhibitors. Journal of Medicinal Chemistry, 2003, 46, 5700-5711.	2.9	69
31	Reduced Amide Bond Peptidomimetics. (4S)-N-(4-Amino-5-[aminoalkyl]aminopentyl)-N'-nitroguanidines, Potent and Highly Selective Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2001, 44, 2667-2670.	2.9	66
32	Mechanism-based inactivation of mitochondrial monoamine oxidase by N-(1-methylcyclopropyl)benzylamine. Biochemistry, 1984, 23, 1322-1332.	1.2	65
33	Mechanism of inactivation of .gammaaminobutyric acidalphaketoglutaric acid aminotransferase by 4-amino-5-halopentanoic acids. Biochemistry, 1981, 20, 1197-1203.	1.2	64
34	Mechanism of Nitric Oxide Synthase. Evidence that Direct Hydrogen Atom Abstraction from the Oâ^'H Bond ofNG-Hydroxyarginine Is Not Relevant to the Mechanism. Journal of the American Chemical Society, 2001, 123, 2674-2676.	6.6	60
35	Selective Neuronal Nitric Oxide Synthase Inhibitors. Current Topics in Medicinal Chemistry, 2005, 5, 603-624.	1.0	60
36	Solid-Phase, Pd-Catalyzed Silicon-Aryl Carbon Bond Formation. Synthesis of Sansalvamide A Peptide. Organic Letters, 2002, 4, 4171-4174.	2.4	57

#	Article	IF	CITATIONS
37	Short, Highly Efficient Syntheses of Protected 3-Azido- and 4-Azidoproline and Their Precursors. Organic Letters, 2001, 3, 2481-2484.	2.4	56
38	Potent, Highly Selective, and Orally Bioavailable <i>Gem</i> -Difluorinated Monocationic Inhibitors of Neuronal Nitric Oxide Synthase. Journal of the American Chemical Society, 2010, 132, 14229-14238.	6.6	55
39	Design and Mechanism of (<i>S</i>)-3-Amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic Acid, a Highly Potent γ-Aminobutyric Acid Aminotransferase Inactivator for the Treatment of Addiction. Journal of the American Chemical Society, 2018, 140, 2151-2164.	6.6	53
40	Targeting Nitric Oxide Signaling with nNOS Inhibitors As a Novel Strategy for the Therapy and Prevention of Human Melanoma. Antioxidants and Redox Signaling, 2013, 19, 433-447.	2.5	51
41	Fluorinated Conformationally Restricted γ-Aminobutyric Acid Aminotransferase Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 7404-7412.	2.9	50
42	Unexpected Binding Modes of Nitric Oxide Synthase Inhibitors Effective in the Prevention of a Cerebral Palsy Phenotype in an Animal Model. Journal of the American Chemical Society, 2010, 132, 5437-5442.	6.6	50
43	Design and Mechanism of GABA Aminotransferase Inactivators. Treatments for Epilepsies and Addictions. Chemical Reviews, 2018, 118, 4037-4070.	23.0	50
44	Mechanism of Inactivation of Inducible Nitric Oxide Synthase by Amidines. Irreversible Enzyme Inactivation without Inactivator Modification. Journal of the American Chemical Society, 2005, 127, 858-868.	6.6	47
45	Carbonyl- and sulfur-containing analogs of suberoylanilide hydroxamic acid: Potent inhibition of histone deacetylases. Bioorganic and Medicinal Chemistry, 2006, 14, 3320-3329.	1.4	46
46	Mechanism of inactivation of γ-cystathionase by β,β,β-trifluoroalanine. Biochemistry, 1977, 16, 5515-5520.	1.2	45
47	Exploration of the Active Site of Neuronal Nitric Oxide Synthase by the Design and Synthesis of Pyrrolidinomethyl 2-Aminopyridine Derivatives. Journal of Medicinal Chemistry, 2010, 53, 7804-7824.	2.9	45
48	Mechanism of inactivation of .gammaaminobutyrate aminotransferase by 4-amino-5-fluoropentanoic acid. First example of an enamine mechanism for a .gammaamino acid with a partition ratio of 0. Biochemistry, 1986, 25, 6817-6820.	1.2	44
49	A Convenient Synthesis of 3-Alkyl-4-aminobutanoic Acids. Synthesis, 1989, 1989, 953-955.	1.2	44
50	Rapid, High-Yield, Solid-Phase Synthesis of the Antitumor Antibiotic Sansalvamide A Using a Side-Chain-Tethered Phenylalanine Building Block. Organic Letters, 2000, 2, 3743-3746.	2.4	44
51	Selective Inhibition of Neuronal Nitric Oxide Synthase byNω-Nitroarginine- and Phenylalanine-Containing Dipeptides and Dipeptide Esters. Journal of Medicinal Chemistry, 1997, 40, 2813-2817.	2.9	43
52	(1 <i>S</i> , 3 <i>S</i>)-3-Amino-4-difluoromethylenyl-1-cyclopentanoic Acid (CPP-115), a Potent γ-Aminobutyric Acid Aminotransferase Inactivator for the Treatment of Cocaine Addiction. Journal of Medicinal Chemistry, 2012, 55, 357-366.	2.9	43
53	ADME-Guided Design and Synthesis of Aryloxanyl Pyrazolone Derivatives To Block Mutant Superoxide Dismutase 1 (SOD1) Cytotoxicity and Protein Aggregation: Potential Application for the Treatment of Amyotrophic Lateral Sclerosis. Journal of Medicinal Chemistry, 2012, 55, 515-527.	2.9	43
54	Structural and biological studies on bacterial nitric oxide synthase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18127-18131.	3.3	43

#	Article	IF	CITATIONS
55	The Potential Use of Mechanism-Based Enzyme Inactivators in Medicine. Journal of Enzyme Inhibition and Medicinal Chemistry, 1988, 2, 73-90.	0.5	42
56	Identification of the Active Site Cysteine in Bovine Liver Monoamine Oxidase B. Journal of the American Chemical Society, 1997, 119, 6690-6691.	6.6	42
57	An Aromatization Mechanism of Inactivation of \hat{I}^3 -Aminobutyric Acid Aminotransferase for the Antibioticl-Cycloserine. Journal of the American Chemical Society, 1998, 120, 2256-2267.	6.6	41
58	Aromatic Reduced Amide Bond Peptidomimetics as Selective Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2003, 46, 1661-1669.	2.9	41
59	Antagonism of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates toward voltage-dependent L-type Ca2+ channels CaV1.3 and CaV1.2. Bioorganic and Medicinal Chemistry, 2010, 18, 3147-3158.	1.4	41
60	Irreversible inactivation of pig brain γ-aminobutyric acid-α-ketoglutarate transaminase by 4-amino-5-halopentanoic acids. Biochemical and Biophysical Research Communications, 1980, 95, 250-255.	1.0	40
61	Mild and Selective Sodium Azide Mediated Cleavage ofp-Nitrobenzoic Esters. Organic Letters, 2001, 3, 2477-2479.	2.4	40
62	Role of Zinc in Isoform-Selective Inhibitor Binding to Neuronal Nitric Oxide Synthase,. Biochemistry, 2010, 49, 10803-10810.	1.2	40
63	Pyrimidine-2,4,6-trione Derivatives and Their Inhibition of Mutant SOD1-Dependent Protein Aggregation. Toward a Treatment for Amyotrophic Lateral Sclerosis. Journal of Medicinal Chemistry, 2011, 54, 2409-2421.	2.9	40
64	Simplified 2-Aminoquinoline-Based Scaffold for Potent and Selective Neuronal Nitric Oxide Synthase Inhibition. Journal of Medicinal Chemistry, 2014, 57, 1513-1530.	2.9	40
65	Neuronal Nitric Oxide Synthase Inhibition Prevents Cerebral Palsy following Hypoxia-Ischemia in Fetal Rabbits: Comparison between JI-8 and 7-Nitroindazole. Developmental Neuroscience, 2011, 33, 312-319.	1.0	39
66	Electrostatic Control of Isoform Selective Inhibitor Binding in Nitric Oxide Synthase. Biochemistry, 2016, 55, 3702-3707.	1.2	39
67	Analogues of 2-aminopyridine-based selective inhibitors of neuronal nitric oxide synthase with increased bioavailability. Bioorganic and Medicinal Chemistry, 2009, 17, 2371-2380.	1.4	38
68	Symmetric Double-Headed Aminopyridines, a Novel Strategy for Potent and Membrane-Permeable Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2011, 54, 2039-2048.	2.9	38
69	Suppression of Hepatocellular Carcinoma by Inhibition of Overexpressed Ornithine Aminotransferase. ACS Medicinal Chemistry Letters, 2015, 6, 840-844.	1.3	38
70	The organic chemistry of mechanism-based enzyme inhibition: A chemical approach to drug design. Medicinal Research Reviews, 1984, 4, 415-447.	5.0	37
71	Inhibition and Substrate Activity of Conformationally Rigid Vigabatrin Analogues with Î ³ -Aminobutyric Acid Aminotransferase. Journal of Medicinal Chemistry, 1999, 42, 4725-4728.	2.9	37
72	New substrates and inhibitors of γ-aminobutyric acid aminotransferase containing bioisosteres of the carboxylic acid group: Design, synthesis, and biological activity. Bioorganic and Medicinal Chemistry, 2006, 14, 1331-1338.	1.4	37

#	Article	IF	CITATIONS
73	Enantiomers of 4-Amino-3-fluorobutanoic Acid as Substrates for Î ³ -Aminobutyric Acid Aminotransferase. Conformational Probes for GABA Binding. Biochemistry, 2007, 46, 13819-13828.	1.2	37
74	Potent and Selective Double-Headed Thiophene-2-carboximidamide Inhibitors of Neuronal Nitric Oxide Synthase for the Treatment of Melanoma. Journal of Medicinal Chemistry, 2014, 57, 686-700.	2.9	37
75	Revised mechanism for inactivation of mitochondrial monoamine oxidase by N-cyclopropylbenzylamine. Biochemistry, 1985, 24, 6538-6543.	1.2	36
76	Synthesis and Evaluation of Peptidomimetics as Selective Inhibitors and Active Site Probes of Nitric Oxide Synthases. Journal of Medicinal Chemistry, 2000, 43, 2938-2945.	2.9	36
77	Effect of .alphamethylation on inactivation of monoamine oxidase by N-cyclopropylbenzylamine. Biochemistry, 1984, 23, 5206-5213.	1.2	35
78	Identification of the amino acid bound to the labile adduct formed during inactivation of monoamine oxidase by 1-phenylcyclopropylamine. Biochemical and Biophysical Research Communications, 1986, 135, 154-159.	1.0	35
79	Intramolecular hydrogen bonding: A potential strategy for more bioavailable inhibitors of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry, 2012, 20, 2435-2443.	1.4	35
80	N-(1-Methyl)cyclopropylbenzylamine: A novel inactivator of mitochondrial monoamine oxidase. Biochemical and Biophysical Research Communications, 1981, 101, 1396-1401.	1.0	34
81	Efficient Solid-Phase Synthesis of Compounds Containing Phenylalanine and Its Derivatives via Side-Chain Attachment to the Polymer Support. Journal of the American Chemical Society, 1999, 121, 8407-8408.	6.6	34
82	Design of a Conformationally Restricted Analogue of the Antiepilepsy Drug Vigabatrin that Directs Its Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase. Journal of the American Chemical Society, 2002, 124, 1620-1624.	6.6	34
83	Identification of compounds protective against G93A-SOD1 toxicity for the treatment of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 87-96.	2.3	34
84	Traceless Solid-Phase Synthesis of Chiral 3-Arylβ-Amino Acid Containing Peptides Using a Side-Chain-Tetheredβ-Amino Acid Building Block. Organic Letters, 2000, 2, 303-306.	2.4	33
85	Inactivation and Inhibition of γ-Aminobutyric Acid Aminotransferase by Conformationally Restricted Vigabatrin Analogues. Journal of Medicinal Chemistry, 2002, 45, 4531-4539.	2.9	33
86	Antagonism of L-type Ca2+ channels CaV1.3 and CaV1.2 by 1,4-dihydropyrimidines and 4H-pyrans as dihydropyridine mimics. Bioorganic and Medicinal Chemistry, 2013, 21, 4365-4373.	1.4	33
87	Structures of human constitutive nitric oxide synthases. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2667-2674.	2.5	33
88	The 2011 E. B. Hershberg Award for Important Discoveries in Medicinally Active Substances: (1 <i>S</i> ,3 <i>S</i>)-3-Amino-4-difluoromethylenyl-1-cyclopentanoic Acid (CPP-115), a GABA Aminotransferase Inactivator and New Treatment for Drug Addiction and Infantile Spasms. Journal of Medicinal Chemistry, 2012, 55, 567-575.	2.9	32
89	Mechanisms of Inactivation of Î ³ -Aminobutyric Acid Aminotransferase by 4-Amino-5-fluoro-5-hexenoic Acid. Journal of the American Chemical Society, 1996, 118, 1241-1252.	6.6	31
90	Syntheses and evaluation of fluorinated conformationally restricted analogues of GABA as potential inhibitors of GABA aminotransferase. Bioorganic and Medicinal Chemistry, 2006, 14, 2242-2252.	1.4	31

#	Article	IF	CITATIONS
91	Regulation of aldosterone secretion by Cav1.3. Scientific Reports, 2016, 6, 24697.	1.6	30
92	Mechanism of inactivation of monoamine oxidase B by (aminomethyl)trimethylsilane. Journal of the American Chemical Society, 1990, 112, 4499-4507.	6.6	29
93	Unusual Mechanistic Difference in the Inactivation of γ-Aminobutyric Acid Aminotransferase by (E)- and (Z)-4-Amino-6-fluoro-5-hexenoic Acid. Journal of the American Chemical Society, 1996, 118, 1253-1261.	6.6	29
94	Imidazole-containing amino acids as selective inhibitors of nitric oxide synthases. Bioorganic and Medicinal Chemistry, 1999, 7, 1941-1951.	1.4	29
95	Structures of the Neuronal and Endothelial Nitric Oxide Synthase Heme Domain withd-Nitroarginine-Containing Dipeptide Inhibitors Boundâ€. Biochemistry, 2004, 43, 5181-5187.	1.2	29
96	Potent and Selective Conformationally Restricted Neuronal Nitric Oxide Synthase Inhibitors. Journal of Medicinal Chemistry, 2004, 47, 703-710.	2.9	29
97	Structure-Based Design and Synthesis ofNω-Nitro-l-Arginine-Containing Peptidomimetics as Selective Inhibitors of Neuronal Nitric Oxide Synthase. Displacement of the Heme Structural Water. Journal of Medicinal Chemistry, 2007, 50, 2089-2099.	2.9	29
98	Hypoxia–ischemia causes persistent movement deficits in a perinatal rabbit model of cerebral palsy: assessed by a new swim test. International Journal of Developmental Neuroscience, 2009, 27, 549-557.	0.7	29
99	Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1 <i>S</i> ,3 <i>S</i>)-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115). Journal of the American Chemical Society, 2015, 137, 2628-2640.	6.6	29
100	β-Glucocerebrosidase Modulators Promote Dimerization of β-Glucocerebrosidase and Reveal an Allosteric Binding Site. Journal of the American Chemical Society, 2018, 140, 5914-5924.	6.6	29
101	Optimization of Blood–Brain Barrier Permeability with Potent and Selective Human Neuronal Nitric Oxide Synthase Inhibitors Having a 2-Aminopyridine Scaffold. Journal of Medicinal Chemistry, 2019, 62, 2690-2707.	2.9	29
102	Mechanism of inactivation of .gammaaminobutyric acid aminotransferase by 4-amino-5-hexynoic acid (.gammaethynyl GABA). Journal of the American Chemical Society, 1991, 113, 9329-9340.	6.6	28
103	Isolation and characterization of the product of inactivation of γ-aminobutyric acid aminotransferase by gabaculine. Bioorganic and Medicinal Chemistry, 1999, 7, 1581-1590.	1.4	28
104	Structure–Activity Relationship of N,N′-Disubstituted Pyrimidinetriones as Ca _V 1.3 Calcium Channel-Selective Antagonists for Parkinson's Disease. Journal of Medicinal Chemistry, 2013, 56, 4786-4797.	2.9	28
105	Development and characterization of 3-(benzylsulfonamido)benzamides as potent and selective SIRT2 inhibitors. European Journal of Medicinal Chemistry, 2014, 76, 414-426.	2.6	28
106	Ornithine Aminotransferase versus GABA Aminotransferase: Implications for the Design of New Anticancer Drugs. Medicinal Research Reviews, 2015, 35, 286-305.	5.0	28
107	Nitrile in the Hole: Discovery of a Small Auxiliary Pocket in Neuronal Nitric Oxide Synthase Leading to the Development of Potent and Selective 2-Aminoquinoline Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 3958-3978.	2.9	28
108	The use of mechanism-based inactivators to probe the mechanism of monoamine oxidase. Biochemical Society Transactions, 1991, 19, 201-206.	1.6	27

#	Article	IF	CITATIONS
109	Mechanism of Inactivation of Neuronal Nitric Oxide Synthase by Nï‰-Allyl-l-Arginine. Journal of the American Chemical Society, 1997, 119, 10888-10902.	6.6	27
110	Mechanistic Studies of the Inactivation of Inducible Nitric Oxide Synthase byN5-(1-Iminoethyl)-l-ornithine (l-NIO). Journal of the American Chemical Society, 1999, 121, 903-916.	6.6	27
111	Potent and selective neuronal nitric oxide synthase inhibitors with improved cellular permeability. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 554-557.	1.0	27
112	Novel 2,4-Disubstituted Pyrimidines as Potent, Selective, and Cell-Permeable Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2015, 58, 1067-1088.	2.9	27
113	PLP and GABA trigger GabR-mediated transcription regulation in <i>Bacillus subtilis</i> via external aldimine formation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3891-3896.	3.3	26
114	Silicon-based aromatic transferring linkers for traceless solid-phase synthesis of aryl-, polyaryl-, and heteroaryl-containing compounds. Tetrahedron, 2001, 57, 5339-5352.	1.0	25
115	Mechanistic Crystallography. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1R,3S,4S)-3-Amino-4-fluorocyclopentane-1-carboxylic Acid As Elucidated by Crystallographyâ€. Biochemistry, 2004, 43, 14057-14063.	1.2	25
116	Structure-Guided Design of Selective Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2013, 56, 3024-3032.	2.9	25
117	Inactivation of .gammaaminobutyric acid aminotransferase by (S,E)-4-amino-5-fluoropent-2-enoic acid and effect on the enzyme of (E)-3-(1-aminocyclopropyl)-2-propenoic acid. Journal of Medicinal Chemistry, 1986, 29, 1840-1846.	2.9	24
118	Selective l-nitroargininylaminopyrrolidine and l-nitroargininylaminopiperidine neuronal nitric oxide synthase inhibitors. Bioorganic and Medicinal Chemistry, 2007, 15, 1928-1938.	1.4	24
119	Total Synthesis of Tambromycin Enabled by Indole C–H Functionalization. Organic Letters, 2018, 20, 2369-2373.	2.4	24
120	Chemoenzymatic Synthesis of (<i>R</i>)- and (<i>S</i>)-4-Amino-3-Methylbutanoic Acids. Synthetic Communications, 1990, 20, 159-166.	1.1	23
121	Partial neuroprotection by nNOS inhibition during profound asphyxia in preterm fetal sheep. Experimental Neurology, 2013, 250, 282-292.	2.0	23
122	2-Aminopyridines with a Truncated Side Chain To Improve Human Neuronal Nitric Oxide Synthase Inhibitory Potency and Selectivity. Journal of Medicinal Chemistry, 2015, 58, 5548-5560.	2.9	23
123	Phenyl Ether- and Aniline-Containing 2-Aminoquinolines as Potent and Selective Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2015, 58, 8694-8712.	2.9	23
124	Potent and Selective Human Neuronal Nitric Oxide Synthase Inhibition by Optimization of the 2-Aminopyridine-Based Scaffold with a Pyridine Linker. Journal of Medicinal Chemistry, 2016, 59, 4913-4925.	2.9	23
125	Conformationally Restricted Dipeptide Amides as Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 6254-6263.	2.9	22
126	Cyclohexane 1,3-diones and their inhibition of mutant SOD1-dependent protein aggregation and toxicity in PC12 cells. Bioorganic and Medicinal Chemistry, 2012, 20, 1029-1045.	1.4	22

#	Article	IF	CITATIONS
127	4-Amino-2-(substituted methyl)-2-butenoic acids: substrates and potent inhibitors of .gammaaminobutyric acid aminotransferase. Journal of Medicinal Chemistry, 1986, 29, 764-770.	2.9	21
128	Synthesis and evaluation of novel aromatic substrates and competitive inhibitors of GABA aminotransferase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3122-3125.	1.0	21
129	Selective Monocationic Inhibitors of Neuronal Nitric Oxide Synthase. Binding Mode Insights from Molecular Dynamics Simulations. Journal of the American Chemical Society, 2012, 134, 11559-11572.	6.6	21
130	Nitric Oxide Synthase Inhibitors That Interact with Both Heme Propionate and Tetrahydrobiopterin Show High Isoform Selectivity. Journal of Medicinal Chemistry, 2014, 57, 4382-4396.	2.9	21
131	Design, synthesis, and biological testing of potential heme-coordinating nitric oxide synthase inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 3185-3198.	1.4	20
132	Structural modifications of (1S,3S)-3-amino-4-difluoromethylenecyclopentanecarboxylic acid, a potent irreversible inhibitor of GABA aminotransferase. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1651-1654.	1.0	20
133	Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Ironâ^'Thioether Coordination Is Stabilized by Hydrophobic Contacts without Increased Inhibitor Potency. Journal of the American Chemical Society, 2010, 132, 798-806.	6.6	20
134	Arylsulfanyl pyrazolones block mutant SOD1-G93A aggregation. Potential application for the treatment of amyotrophic lateral sclerosis. Bioorganic and Medicinal Chemistry, 2011, 19, 613-622.	1.4	20
135	Involvement of Neuronal Nitric Oxide Synthase in Ongoing Fetal Brain Injury following Near-Term Rabbit Hypoxia-Ischemia. Developmental Neuroscience, 2011, 33, 288-298.	1.0	20
136	nNOS inhibition during profound asphyxia reduces seizure burden and improves survival of striatal phenotypic neurons in preterm fetal sheep. Neuropharmacology, 2014, 83, 62-70.	2.0	20
137	A Remarkable Difference That One Fluorine Atom Confers on the Mechanisms of Inactivation of Human Ornithine Aminotransferase by Two Cyclohexene Analogues of Î ³ -Aminobutyric Acid. Journal of the American Chemical Society, 2020, 142, 4892-4903.	6.6	20
138	Improving mitochondria and ER stability helps eliminate upper motor neuron degeneration that occurs due to mSOD1 toxicity and TDPâ€43 pathology. Clinical and Translational Medicine, 2021, 11, e336.	1.7	20
139	Crystal Structures of Constitutive Nitric Oxide Synthases in Complex with De Novo Designed Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 2060-2066.	2.9	19
140	Structure-based design, synthesis, and biological evaluation of lipophilic-tailed monocationic inhibitors of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry, 2010, 18, 6526-6537.	1.4	19
141	The Mobility of a Conserved Tyrosine Residue Controls Isoform-Dependent Enzyme–Inhibitor Interactions in Nitric Oxide Synthases. Biochemistry, 2014, 53, 5272-5279.	1.2	19
142	Inactivation of .gammaaminobutyric acid aminotransferase by (Z)-4-amino-2-fluorobut-2-enoic acid. Biochemistry, 1988, 27, 3285-3289.	1.2	18
143	Mechanism-based enzyme inactivation via a diactivated cyclopropane intermediate. Journal of the American Chemical Society, 1993, 115, 2982-2983.	6.6	18
144	Exploring the Binding Conformations of Bulkier Dipeptide Amide Inhibitors in Constitutive Nitric Oxide Synthasesâ€. Biochemistry, 2005, 44, 15222-15229.	1.2	18

#	Article	IF	CITATIONS
145	Peripheral but crucial: A hydrophobic pocket (Tyr706, Leu337, and Met336) for potent and selective inhibition of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6258-6261.	1.0	18
146	Hydrophilic, Potent, and Selective 7-Substituted 2-Aminoquinolines as Improved Human Neuronal Nitric Oxide Synthase Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 7146-7165.	2.9	18
147	Mechanism of inactivation of Î ³ -aminobutyric acid aminotransferase by (S,E) Tj ETQq1 1 0.784314 rgBT /Overlock 942-946.	10 Tf 50 1.0	667 Td ()-4 17
148	Mechanism of Inactivation of Î ³ -Aminobutyric Acid Aminotransferase by (S)-4-Amino-4,5-dihydro-2-thiophenecarboxylic Acid. Journal of the American Chemical Society, 1999, 121, 7751-7759.	6.6	17
149	Inactivation of mitochondrial monoamine oxidase B by methylthio-substituted benzylamines. Bioorganic and Medicinal Chemistry, 2003, 11, 4423-4430.	1.4	17
150	Remote protection prevents unwanted cyclizations with 2-aminopyridines. Tetrahedron Letters, 2006, 47, 6113-6115.	0.7	17
151	Chiral Cyclohexane 1,3-Diones as Inhibitors of Mutant SOD1-Dependent Protein Aggregation for the Treatment of ALS. ACS Medicinal Chemistry Letters, 2012, 3, 584-587.	1.3	17
152	Arylazanylpyrazolone Derivatives as Inhibitors of Mutant Superoxide Dismutase 1 Dependent Protein Aggregation for the Treatment of Amyotrophic Lateral Sclerosis. Journal of Medicinal Chemistry, 2013, 56, 2665-2675.	2.9	17
153	Tertiary Amine Pyrazolones and Their Salts as Inhibitors of Mutant Superoxide Dismutase 1-Dependent Protein Aggregation for the Treatment of Amyotrophic Lateral Sclerosis. Journal of Medicinal Chemistry, 2015, 58, 5942-5949.	2.9	17
154	Design and Mechanism of Tetrahydrothiophene-Based Î ³ -Aminobutyric Acid Aminotransferase Inactivators. Journal of the American Chemical Society, 2015, 137, 4525-4533.	6.6	17
155	The Multiple Active Enzyme Species of γ-Aminobutyric Acid Aminotransferase Are Not Isozymes. Archives of Biochemistry and Biophysics, 2000, 374, 248-254.	1.4	16
156	(±)-(1S,2R,5S)-5-Amino-2-fluorocyclohex-3-enecarboxylic Acid. A Potent GABA Aminotransferase Inactivator that Irreversibly Inhibits via an Eliminationâ^'Aromatization Pathway. Biochemistry, 2006, 45, 14513-14522.	1.2	16
157	Effect of potential amine prodrugs of selective neuronal nitric oxide synthase inhibitors on blood–brain barrier penetration. Bioorganic and Medicinal Chemistry, 2009, 17, 7593-7605.	1.4	16
158	A cellular model for screening neuronal nitric oxide synthase inhibitors. Analytical Biochemistry, 2009, 390, 74-78.	1.1	16
159	Temperature-Dependent Spin Crossover in Neuronal Nitric Oxide Synthase Bound with the Heme-Coordinating Thioether Inhibitors. Journal of the American Chemical Society, 2011, 133, 8326-8334.	6.6	16
160	Deuteration and fluorination of 1,3-bis(2-phenylethyl)pyrimidine-2,4,6(1H,3H,5H)-trione to improve its pharmacokinetic properties. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5098-5101.	1.0	16
161	Design and Synthesis of Potent Quinazolines as Selective Î ² -Glucocerebrosidase Modulators. Journal of Medicinal Chemistry, 2016, 59, 8508-8520.	2.9	16
162	Targeting Bacterial Nitric Oxide Synthase with Aminoquinoline-Based Inhibitors. Biochemistry, 2016, 55, 5587-5594.	1.2	16

#	Article	IF	CITATIONS
163	Conversion of Quinazoline Modulators from Inhibitors to Activators of Î ² -Glucocerebrosidase. Journal of Medicinal Chemistry, 2019, 62, 1218-1230.	2.9	16
164	Conformationally-restricted vigabatrin analogs as irreversible and reversible inhibitors of γ-aminobutyric acid aminotransferase. Bioorganic and Medicinal Chemistry, 2004, 12, 5719-5725.	1.4	15
165	Inactivation of <i>Escherichia coli</i> <scp>l</scp> -Aspartate Aminotransferase by (<i>S</i>)-4-Amino-4,5-dihydro-2-thiophenecarboxylic Acid Reveals "A Tale of Two Mechanismsâ€< sup>,. Biochemistry, 2007, 46, 10517-10527.	1.2	15
166	Synthesis and evaluation of novel heteroaromatic substrates of GABA aminotransferase. Bioorganic and Medicinal Chemistry, 2012, 20, 5763-5773.	1.4	15
167	Probing the steric requirements of the γ-aminobutyric acid aminotransferase active site with fluorinated analogues of vigabatrin. Bioorganic and Medicinal Chemistry, 2013, 21, 903-911.	1.4	15
168	Structure-Based Design of Bacterial Nitric Oxide Synthase Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 994-1004.	2.9	15
169	Nitric Oxide Synthase as a Target for Methicillin-Resistant Staphylococcus aureus. Chemistry and Biology, 2015, 22, 785-792.	6.2	15
170	Selective Targeting by a Mechanism-Based Inactivator against Pyridoxal 5â€2-Phosphate-Dependent Enzymes: Mechanisms of Inactivation and Alternative Turnover. Biochemistry, 2017, 56, 4951-4961.	1.2	15
171	Mechanism of Inactivation of Ornithine Aminotransferase by (1 <i>S</i> ,3 <i>S</i>)-3-Amino-4-(hexafluoropropan-2-ylidenyl)cyclopentane-1-carboxylic Acid. Journal of the American Chemical Society, 2019, 141, 10711-10721.	6.6	15
172	4-Substituted Cubylcarbinylamines:  A New Class of Mechanism-Based Monoamine Oxidase B Inactivators. Journal of Medicinal Chemistry, 1997, 40, 1165-1168.	2.9	14
173	ENDOR Spectroscopic Evidence for the Geometry of Binding ofretro-inverso-N݉-Nitroarginine-Containing Dipeptide Amides to Neuronal Nitric Oxide Synthase. Journal of the American Chemical Society, 2000, 122, 7869-7875.	6.6	14
174	Mevalonate analogues as substrates of enzymes in the isoprenoid biosynthetic pathway of Streptococcus pneumoniae. Bioorganic and Medicinal Chemistry, 2010, 18, 1124-1134.	1.4	14
175	Acid-facilitated debenzylation of N-Boc, N-benzyl double protected 2-aminopyridinomethyl pyrrolidine derivatives. Tetrahedron, 2012, 68, 1359-1366.	1.0	14
176	Two continuous coupled assays for ornithine-l´-aminotransferase. Analytical Biochemistry, 2013, 440, 145-149.	1.1	14
177	Cyclopropyl- and methyl-containing inhibitors of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry, 2013, 21, 1333-1343.	1.4	14
178	First Contact: 7-Phenyl-2-Aminoquinolines, Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors That Target an Isoform-Specific Aspartate. Journal of Medicinal Chemistry, 2020, 63, 4528-4554.	2.9	14
179	Monoamine oxidase-catalyzed oxidative decarboxylation of cis- and trans-5-aminomethyl-3-(4-methoxyphenyl)dihydrofuran-2(3H)-one. Evidence for the intermediacy of an .alpharadical. Journal of the American Chemical Society, 1995, 117, 12895-12896.	6.6	13
180	Inactivation of monoamine oxidase B by 1-phenylcyclopropylamine. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1757-1760.	1.0	13

#	Article	IF	CITATIONS
181	Accessible Chiral Linker to Enhance Potency and Selectivity of Neuronal Nitric Oxide Synthase Inhibitors. ACS Medicinal Chemistry Letters, 2014, 5, 56-60.	1.3	13
182	A Single Amino Acid Determines the Selectivity and Efficacy of Selective Negative Allosteric Modulators of CaV1.3 L-Type Calcium Channels. ACS Chemical Biology, 2020, 15, 2539-2550.	1.6	13
183	4-(Aminomethyl)-1-Aryl-2-Pyrrolidinones, A New Class of Monoamine Oxidase B Inactivators. Journal of Enzyme Inhibition and Medicinal Chemistry, 1992, 6, 223-231.	0.5	12
184	Sar Studies of Fluorine-Substituted Benzylamines and Substituted 2-Phenylethylamines as Substrates and Inactivators of Monoamine Oxidase B. Journal of Enzyme Inhibition and Medicinal Chemistry, 1995, 9, 203-215.	0.5	12
185	Inactivation of γ-aminobutyric acid aminotransferase by (S)-4-amino-4,5-dihydro-2-furancarboxylic acid does not proceed by the expected aromatization mechanism. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 203-206.	1.0	12
186	Probing Ligand-binding Pockets of the Mevalonate Pathway Enzymes from Streptococcus pneumoniae. Journal of Biological Chemistry, 2010, 285, 20654-20663.	1.6	12
187	Chiral Discrimination among Aminotransferases: Inactivation by 4-Amino-4,5-dihydrothiophenecarboxylic Acid. Biochemistry, 2010, 49, 3138-3147.	1.2	12
188	Mechanism of Inactivation of GABA Aminotransferase by (<i>E</i>)- and (<i>Z</i>)-(1 <i>S</i> ,3 <i>S</i>)-3-Amino-4-fluoromethylenyl-1-cyclopentanoic Acid. ACS Chemical Biology, 2015, 10, 2087-2098.	1.6	12
189	Physiological involvement of presynaptic Lâ€ŧype voltageâ€dependent calcium channels in GABA release of cerebellar molecular layer interneurons. Journal of Neurochemistry, 2020, 155, 390-402.	2.1	12
190	Inactivation of monoamine oxidase B by benzyl 1-(aminomethyl)cyclopropane-1-carboxylate. Bioorganic and Medicinal Chemistry, 1997, 5, 297-304.	1.4	11
191	Synthesis and enzymatic evaluation of 2- and 4-aminothiazole-based inhibitors of neuronal nitric oxide synthase. Beilstein Journal of Organic Chemistry, 2009, 5, 28.	1.3	11
192	L337H Mutant of Rat Neuronal Nitric Oxide Synthase Resembles Human Neuronal Nitric Oxide Synthase toward Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 4533-4537.	2.9	11
193	Synthesis of mevalonate- and fluorinated mevalonate prodrugs and their inÂvitro human plasma stability. European Journal of Medicinal Chemistry, 2015, 90, 448-461.	2.6	11
194	Improvement of Cell Permeability of Human Neuronal Nitric Oxide Synthase Inhibitors Using Potent and Selective 2-Aminopyridine-Based Scaffolds with a Fluorobenzene Linker. Journal of Medicinal Chemistry, 2017, 60, 9360-9375.	2.9	11
195	Synthesis of (<i>S</i>)-3-Amino-4-(difluoromethylenyl)-cyclopent-1-ene-1-carboxylic Acid (OV329), a Potent Inactivator of Î ³ -Aminobutyric Acid Aminotransferase. Organic Letters, 2018, 20, 4589-4592.	2.4	11
196	Invivo inactivation of γ-aminobutyric acid-α-ketoglutarate transaminase by 4-amino-5-fluoropentanoic acid. Biochemical and Biophysical Research Communications, 1981, 102, 520-523.	1.0	10
197	Anomalous Schmidt reaction products of phenylacetic acid and derivatives. Perkin Transactions II RSC, 2000, , 55-59.	1.1	10
198	Chiral linkers to improve selectivity of double-headed neuronal nitric oxide synthase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5674-5679.	1.0	10

#	Article	IF	CITATIONS
199	OV329, a novel highly potent γâ€aminobutyric acid aminotransferase inactivator, induces pronounced anticonvulsant effects in the pentylenetetrazole seizure threshold test and in amygdalaâ€kindled rats. Epilepsia, 2021, 62, 3091-3104.	2.6	10
200	Concise Route to the Chiral Pyrrolidine Core of Selective Inhibitors of Neuronal Nitric Oxide. Organic Letters, 2009, 11, 5194-5197.	2.4	9
201	Inhibitor Bound Crystal Structures of Bacterial Nitric Oxide Synthase. Biochemistry, 2015, 54, 4075-4082.	1.2	9
202	Mechanistic Studies of Inactivation of Inducible Nitric Oxide Synthase by Amidines. Biochemistry, 2015, 54, 2530-2538.	1.2	9
203	An Efficient Synthesis of 3-Amino-4-Fluorobutanoic Acid, an Inactivator of GABA Transaminase. Synthetic Communications, 1985, 15, 377-383.	1.1	8
204	A mechanism for substrate-Induced formation of 6-Hydroxyflavin mononucleotide catalyzed by C30A trimethylamine dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4129-4132.	1.0	8
205	Purification and inactivation of 3-hydroxyanthranilic acid 3,4-dioxygenase from beef liver. International Journal of Biochemistry and Cell Biology, 2003, 35, 1085-1097.	1.2	8
206	An alkoxide anion-triggered tert-butyloxycarbonyl group migration. Mechanism and application. Tetrahedron Letters, 2010, 51, 2536-2538.	0.7	8
207	Improved Synthesis of Chiral Pyrrolidine Inhibitors and Their Binding Properties to Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2011, 54, 6399-6403.	2.9	8
208	A novel synthesis of 1-aryl-3-piperidone derivatives. Tetrahedron Letters, 2013, 54, 573-575.	0.7	8
209	Inhibition of interferon-gamma-stimulated melanoma progression by targeting neuronal nitric oxide synthase (nNOS). Scientific Reports, 2022, 12, 1701.	1.6	8
210	and effects on brain GABA metabolism of (S)-4-amino-5-fluoropentanoic acid, a mechanism-based inactivator of γ-aminobutyric acid transaminase. Life Sciences, 1983, 32, 2717-2723.	2.0	7
211	In search of potent and selective inhibitors of neuronal nitric oxide synthase with more simple structures. Bioorganic and Medicinal Chemistry, 2013, 21, 5323-5331.	1.4	7
212	Combination of chiral linkers with thiophenecarboximidamide heads to improve the selectivity of inhibitors of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4504-4510.	1.0	7
213	Design and Evaluation of 3-(Benzylthio)benzamide Derivatives as Potent and Selective SIRT2 Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 607-611.	1.3	7
214	Remarkable and Unexpected Mechanism for (<i>S</i>)-3-Amino-4-(difluoromethylenyl)cyclohex-1-ene-1-carboxylic Acid as a Selective Inactivator of Human Ornithine Aminotransferase. Journal of the American Chemical Society, 2021, 143, 8193-8207.	6.6	7
215	Recent Advances Toward Improving the Bioavailability of Neuronal Nitric Oxide Synthase Inhibitors. Current Topics in Medicinal Chemistry, 2013, 13, 803-812.	1.0	7
216	Inactivators of Ornithine Aminotransferase for the Treatment of Hepatocellular Carcinoma. ACS Medicinal Chemistry Letters, 2022, 13, 38-49.	1.3	7

#	Article	IF	CITATIONS
217	Syntheses of N-[1-2H]- and N-[1-3H]-cyclopropylbenzylamine and [phenyl-14C]-N-cyclopropylbenzylamine. Journal of Labelled Compounds and Radiopharmaceuticals, 1981, 18, 781-790.	O.5	6
218	β-Lactams: A New Class of Conformationally-Rigid Inhibitors of γ-Aminobutyric Acid Aminotransferase. Journal of Enzyme Inhibition and Medicinal Chemistry, 1992, 6, 125-129.	0.5	6
219	Inactivation of γ-Aminobutyric Acid Aminotransferase by Various Amine Buffers. Journal of Enzyme Inhibition and Medicinal Chemistry, 1992, 6, 195-199.	0.5	6
220	Synthesis of N-Carbobenzoxy-N, N-acetals. Synthetic Communications, 1993, 23, 1467-1471.	1.1	6
221	Inactivation of γ-aminobutyric acid aminotransferase by l-3-chloroalanine hydroxamate. Bioorganic and Medicinal Chemistry, 1995, 3, 11-18.	1.4	6
222	Synthesis and Evaluation of Dipeptide Amides Containing N ^ω -Nitroarginine and D-2, 4-Diaminobutyric Acids as Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2001, 16, 233-239.	0.5	6
223	Hydroxyl-terminated peptidomimetic inhibitors of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry, 2006, 14, 3681-3690.	1.4	6
224	Hydroxyethylene isosteres of selective neuronal nitric oxide synthase inhibitors. Bioorganic and Medicinal Chemistry, 2007, 15, 6096-6108.	1.4	6
225	Direct Amination of Î ³ -Halo-Î ² -ketoesters with Anilines. Journal of Organic Chemistry, 2012, 77, 3462-3467.	1.7	6
226	Treatment of Amyotrophic Lateral Sclerosis: Lessons Learned from Many Failures. ACS Medicinal Chemistry Letters, 2014, 5, 1179-1181.	1.3	6
227	Mechanism of Inactivation of Neuronal Nitric Oxide Synthase by (S)-2-Amino-5-(2-(methylthio)acetimidamido)pentanoic Acid. Journal of the American Chemical Society, 2015, 137, 5980-5989.	6.6	6
228	Theoretical and Mechanistic Validation of Global Kinetic Parameters of the Inactivation of GABA Aminotransferase by OV329 and CPP-115. ACS Chemical Biology, 2021, 16, 615-630.	1.6	6
229	Turnover and Inactivation Mechanisms for (<i>S</i>)-3-Amino-4,4-difluorocyclopent-1-enecarboxylic Acid, a Selective Mechanism-Based Inactivator of Human Ornithine Aminotransferase. Journal of the American Chemical Society, 2021, 143, 8689-8703.	6.6	6
230	Mechanism-Based Design of 3-Amino-4-Halocyclopentenecarboxylic Acids as Inactivators of GABA Aminotransferase. ACS Medicinal Chemistry Letters, 2020, 11, 1949-1955.	1.3	6
231	NU-9 improves health of hSOD1G93A mouse upper motor neurons in vitro, especially in combination with riluzole or edaravone. Scientific Reports, 2022, 12, 5383.	1.6	6
232	2-Aminopyridines with a shortened amino sidechain as potent, selective, and highly permeable human neuronal nitric oxide synthase inhibitors. Bioorganic and Medicinal Chemistry, 2022, 69, 116878.	1.4	6
233	Reaction of diethyl acetonedicarboxylate with nitrosyl chloride. Journal of Heterocyclic Chemistry, 1978, 15, 1519-1520.	1.4	5
234	Synthesis of 2-Substituted-3-Phytyl-1,4-naphthoquinone Epoxides. Synthetic Communications, 1990, 20, 431-438.	1.1	5

#	Article	IF	CITATIONS
235	Monoamine Oxidase B-Catalyzed Reactions of cis- and trans-5-Aminomethyl-3-(4-Methoxyphenyl)dihydrofuran-2(3H)-ones. Evidence for a Reversible Redox Reaction. Journal of the American Chemical Society, 1998, 120, 10583-10587.	6.6	5
236	Synthesis of Cyclopropane Isosteres of the Antiepilepsy Drug Vigabatrin and Evaluation of their Inhibition of GABA Aminotransferase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 293-301.	2.5	5
237	Mechanism of Inactivation of <i>Escherichia coli</i> Aspartate Aminotransferase by (<i>S</i>)-4-Amino-4,5-dihydro-2-furancarboxylic Acid,. Biochemistry, 2010, 49, 10507-10515.	1.2	5
238	Synthesis of (S)-2-Boc-Amino-8-(R)-(tert-butyldimethylsilanyloxy)decanoic acid, a precursor to the unusual amino acid residue of the anticancer agent microsporin B. Tetrahedron Letters, 2011, 52, 5438-5440.	0.7	5
239	High yielding allylation of a chiral secondary alcohol containing base sensitive functional groups. Tetrahedron Letters, 2012, 53, 1319-1322.	0.7	5
240	Structural and Kinetic Analyses Reveal the Dual Inhibition Modes of Ornithine Aminotransferase by (1 <i>S</i> ,3 <i>S</i>)-3-Amino-4-(hexafluoropropan-2-ylidenyl)-cyclopentane-1-carboxylic Acid (BCF ₃). ACS Chemical Biology, 2021, 16, 67-75.	1.6	5
241	α-Amino acid analogues as mechanism-based inactivators of γ-aminobutyric acid aminotransferase. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 1371-1374.	1.0	4
242	Mechanism-based inactivation of Î ³ -aminobutyric acid aminotransferase by 3-amino-4-fluorobutanoic acid. Bioorganic and Medicinal Chemistry, 1996, 4, 1521-1535.	1.4	4
243	Effect of The Locus of The Oxygen Atom in Amino Ethers on the Inactivation of Monoamine Oxidase B. Journal of Enzyme Inhibition and Medicinal Chemistry, 1998, 13, 31-39.	0.5	4
244	Rational Design, Synthesis, and Mechanism of (3 <i>S</i> ,4 <i>R</i>)-3-Amino-4-(difluoromethyl)cyclopent-1-ene-1-carboxylic Acid: Employing a Second-Deprotonation Strategy for Selectivity of Human Ornithine Aminotransferase over GABA Aminotransferase. Journal of the American Chemical Society, 2022, 144, 5629-5642.	6.6	4
245	4-(Oxoalkyl)-Substituted Gaba Analogues as Inactivators and Substrates of Gaba Aminotransferase. Journal of Enzyme Inhibition and Medicinal Chemistry, 1991, 5, 199-205.	0.5	3
246	Structural Basis for Isoform Selective Nitric Oxide Synthase Inhibition by Thiophene-2-carboximidamides. Biochemistry, 2018, 57, 6319-6325.	1.2	3
247	(S)â€4―Amino â€5â€phenoxypentanoate designed as a potential selective agonist of the bacterial transcription factor GabR. Protein Science, 2020, 29, 1816-1828.	3.1	3
248	Pregabalin Treatment does not Affect Amyloid Pathology in 5XFAD Mice. Current Alzheimer Research, 2021, 18, 283-297.	0.7	3
249	Synthesis of [carboxyl -14C] 5 - fluoroorotic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 1979, 16, 361-364.	0.5	2
250	Effect of <i>N</i> -Ethylmaleimide on Beef and Rat Liver Vitamin K ₁ Epoxide Reductase. Journal of Enzyme Inhibition and Medicinal Chemistry, 1990, 3, 289-294.	0.5	2
251	3-substituted alanines inactivate Î ³ -aminobutyric acid aminotransferase by the same mechanism as do 4-amino-5-halopentanoic acid analogues. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 143-146.	1.0	2
252	Inactivation of γ-aminobutyric acid aminotransferase by (Z)-4-amino-6-fluoro-5-hexenoic acid: Identification of an active site residue. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1319-1322.	1.0	2

#	Article	IF	CITATIONS
253	Palladium-Catalyzed α-Arylation of Cyclic β-Dicarbonyl Compounds for the Synthesis of Ca _V 1.3 Inhibitors. ACS Omega, 2022, 7, 14252-14263.	1.6	2
254	A Small Peptide Increases Drug Delivery in Human Melanoma Cells. Pharmaceutics, 2022, 14, 1036.	2.0	2
255	Selective Inhibition of Monoamine Oxidase B by Aminoethyl Substituted Benzyl Ethers. Journal of Enzyme Inhibition and Medicinal Chemistry, 1999, 15, 11-21.	0.5	1
256	The Anti-Ulcer Drug Ranitidine Hydrochloride and its Synthetic Intermediates are Inactivators of Monoamine Oxidase-B. Journal of Enzyme Inhibition and Medicinal Chemistry, 1993, 7, 43-45.	0.5	0