Ultan McDermott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1932072/publications.pdf

Version: 2024-02-01

106 papers 33,140 citations

²⁶⁵⁶⁷
56
h-index

101 g-index

119 all docs

119 docs citations

119 times ranked 50810 citing authors

#	Article	IF	CITATIONS
1	Functional Genomic Identification of Predictors of Sensitivity and Mechanisms of Resistance to Multivalent Second-Generation TRAIL-R2 Agonists. Molecular Cancer Therapeutics, 2022, 21, 594-606.	1.9	1
2	Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer. Nature Communications, 2022, 13, 1667.	5.8	33
3	Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut, 2021, 70, 544-554.	6.1	148
4	In-depth Clinical and Biological Exploration of DNA Damage Immune Response as a Biomarker for Oxaliplatin Use in Colorectal Cancer. Clinical Cancer Research, 2021, 27, 288-300.	3.2	13
5	Abstract 1100: Gain and loss of function genome-wide CRISPR screens identify Hippo signaling as an important driver of resistance in EGFR mutant lung cancer., 2021,,.		1
6	Abstract 393: Predictive biomarker evaluation and molecular differentiation for imipridones ONC201 and ONC206. , 2021, , .		0
7	Elongator Complex Regulates MCL1 Dependency Via IRE1-XBP1 Axis of the ER Stress Response Pathway in Multiple Myeloma. Blood, 2021, 138, 2275-2275.	0.6	O
8	Abstract P066: Gain and loss of function genome-wide CRISPR screens identify Hippo signalling as an important driver of resistance in EGFR mutant lung cancer., 2021,,.		1
9	Identification of Intrinsic Drug Resistance and Its Biomarkers in High-Throughput Pharmacogenomic and CRISPR Screens. Patterns, 2020, 1, 100065.	3.1	6
10	A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Science Translational Medicine, 2020, 12, .	5.8	101
11	Targeting Acid Ceramidase to Improve the Radiosensitivity of Rectal Cancer. Cells, 2020, 9, 2693.	1.8	14
12	Genomics-guided pre-clinical development of cancer therapies. Nature Cancer, 2020, 1, 482-492.	5.7	23
13	ctDNA monitoring using patient-specific sequencing and integration of variant reads. Science Translational Medicine, 2020, 12, .	5.8	116
14	Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway. ELife, 2020, 9, .	2.8	31
15	Imipridone ONC212 activates orphan G protein-coupled receptor GPR132 and integrated stress response in acute myeloid leukemia. Leukemia, 2019, 33, 2805-2816.	3.3	47
16	Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Nature Communications, 2019, 10, 2198.	5.8	92
17	Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis. Cell, 2019, 176, 1282-1294.e20.	13.5	298
18	Large-scale compound screens and pharmacogenomic interactions in cancer. Current Opinion in Genetics and Development, 2019, 54, 12-16.	1.5	6

#	Article	IF	Citations
19	NOTCH1 Represses MCL-1 Levels in GSI-resistant T-ALL, Making them Susceptible to ABT-263. Clinical Cancer Research, 2019, 25, 312-324.	3.2	11
20	Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nature Genetics, 2018, 50, 682-692.	9.4	182
21	The Origins and Vulnerabilities of Two Transmissible Cancers in Tasmanian Devils. Cancer Cell, 2018, 33, 607-619.e15.	7.7	88
22	Comprehensive Pharmacogenomic Profiling of Malignant Pleural Mesothelioma Identifies a Subgroup Sensitive to FGFR Inhibition. Clinical Cancer Research, 2018, 24, 84-94.	3.2	33
23	Steps forward for cancer precision medicine. Nature Reviews Drug Discovery, 2018, 17, 1-2.	21.5	37
24	Single agent and synergistic combinatorial efficacy of first-in-class small molecule imipridone ONC201 in hematological malignancies. Cell Cycle, 2018, 17, 468-478.	1.3	34
25	Cancer cell lines as patient avatars for drug response prediction. Nature Genetics, 2018, 50, 1350-1351.	9.4	5
26	Patient stratification into robust cancer-cell intrinsic subtypes from colorectal cancer biopsies may inform prospective clinical trials. European Journal of Surgical Oncology, 2018, 44, S49.	0.5	0
27	XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data. BMC Bioinformatics, 2018, 19, 366.	1.2	94
28	An integrated genomic analysis of anaplastic meningioma identifies prognostic molecular signatures. Scientific Reports, 2018, 8, 13537.	1.6	49
29	Loss of functional BAP1 augments sensitivity to TRAIL in cancer cells. ELife, 2018, 7, .	2.8	20
30	Pathway-based dissection of the genomic heterogeneity of cancer hallmarks' acquisition with SLAPenrich. Scientific Reports, 2018, 8, 6713.	1.6	24
31	The germline genetic component of drug sensitivity in cancer cell lines. Nature Communications, 2018, 9, 3385.	5.8	38
32	Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nature Genetics, 2017, 49, 332-340.	9.4	229
33	Individualised monitoring of patients with metastatic melanoma using plasma DNA. Lancet, The, 2017, 389, S99.	6.3	1
34	Genome-wide chemical mutagenesis screens allow unbiased saturation of the cancer genome and identification of drug resistance mutations. Genome Research, 2017, 27, 613-625.	2.4	20
35	Molecular diagnoses of century-old childhood tumours. Lancet Oncology, The, 2017, 18, e237.	5.1	4
36	Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nature Communications, 2017, 8, 15936.	5.8	179

#	Article	IF	CITATIONS
37	High-throughput RNAi screen for essential genes and drug synergistic combinations in colorectal cancer. Scientific Data, 2017, 4, 170139.	2.4	11
38	Genomic Determinants of Protein Abundance Variation in Colorectal Cancer Cells. Cell Reports, 2017, 20, 2201-2214.	2.9	95
39	The Pursuit of Therapeutic Biomarkers with High-Throughput Cancer Cell Drug Screens. Cell Chemical Biology, 2017, 24, 1066-1074.	2.5	22
40	Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genetics, 2017, 13, e1007001.	1.5	34
41	Abstract A44: A landscape of pharmacogenomic interactions in cancer. , 2017, , .		9
42	Cancer stem cell-related gene expression as a potential biomarker of response for first-in-class imipridone ONC201 in solid tumors. PLoS ONE, 2017, 12, e0180541.	1.1	28
43	A Landscape of Pharmacogenomic Interactions in Cancer. Cell, 2016, 166, 740-754.	13.5	1,518
44	Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer. Scientific Reports, 2016, 6, 18517.	1.6	143
45	Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma. Cancer Discovery, 2016, 6, 727-739.	7.7	126
46	Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy. Scientific Reports, 2016, 6, 36812.	1.6	43
47	A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell Reports, 2016, 17, 1193-1205.	2.9	556
48	Mutational signatures of ionizing radiation in second malignancies. Nature Communications, 2016, 7, 12605.	5.8	214
49	FANCD2 limits replication stress and genome instability in cells lacking BRCA2. Nature Structural and Molecular Biology, 2016, 23, 755-757.	3.6	73
50	Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell, 2016, 29, 159-172.	7.7	104
51	Single Agent and Combinatorial Efficacy of First-in-Class Small Molecule ONC201 in Acute Leukemia and Multiple Myeloma. Blood, 2016, 128, 2759-2759.	0.6	1
52	Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen. Oncotarget, 2016, 7, 22128-22139.	0.8	21
53	Potent Anti-Leukemic Effects of Small Molecule ONC212, a Member of the Imipridone Class of Anti-Cancer Compounds. Blood, 2016, 128, 5133-5133.	0.6	0
54	Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma. PLoS ONE, 2015, 10, e0140988.	1.1	72

#	Article	IF	CITATIONS
55	Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR. Nature Medicine, 2015, 21, 741-750.	15.2	107
56	Potent organo-osmium compound shifts metabolism in epithelial ovarian cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3800-5.	3.3	71
57	Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Research, 2015, 25, 814-824.	2.4	69
58	Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients. Cell, 2015, 161, 933-945.	13.5	1,710
59	Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nature Genetics, 2015, 47, 367-372.	9.4	380
60	The evolutionary history of lethal metastatic prostate cancer. Nature, 2015, 520, 353-357.	13.7	1,185
61	Next-generation sequencing and empowering personalised cancer medicine. Drug Discovery Today, 2015, 20, 1470-1475.	3.2	22
62	<i><scp>BRAF</scp></i> /i>/ <i><scp>NRAS</scp></i> wildâ€type melanoma, <scp>NF</scp> 1 status and sensitivity to trametinib. Pigment Cell and Melanoma Research, 2015, 28, 117-119.	1.5	49
63	COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Research, 2015, 43, D805-D811.	6.5	2,096
64	A Crispr/Cas9 Drop-out Screen Identifies Genome-Wide Genetic Valnerubilities in Acute Myeloid Leukaemia. Blood, 2015, 126, 554-554.	0.6	1
65	Personally Tailored Risk Prediction of AML Based on Comprehensive Genomic and Clinical Data. Blood, 2015, 126, 85-85.	0.6	1
66	LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation. Oncotarget, 2015, 6, 38469-38486.	0.8	34
67	A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect. Nature Communications, 2014, 5, 3608.	5.8	94
68	The evolving role of cancer cell line-based screens to define the impact of cancer genomes on drug response. Current Opinion in Genetics and Development, 2014, 24, 114-119.	1.5	29
69	Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nature Genetics, 2014, 46, 376-379.	9.4	269
70	Inactivating CUX1 mutations promote tumorigenesis. Nature Genetics, 2014, 46, 33-38.	9.4	111
71	Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science, 2014, 345, 1251343.	6.0	348
72	Editorial overview: Cancer genomics: kill it. Kill it dead. Current Opinion in Genetics and Development, 2014, 24, v-vi.	1.5	0

#	Article	lF	CITATIONS
73	Reading between the lines; understanding drug response in the post genomic era. Molecular Oncology, 2014, 8, 1112-1119.	2.1	12
74	Signatures of mutational processes in human cancer. Nature, 2013, 500, 415-421.	13.7	8,060
75	A Genetic Progression Model of BrafV600E-Induced Intestinal Tumorigenesis Reveals Targets for Therapeutic Intervention. Cancer Cell, 2013, 24, 15-29.	7.7	183
76	VS-5584, a Novel and Highly Selective PI3K/mTOR Kinase Inhibitor for the Treatment of Cancer. Molecular Cancer Therapeutics, 2013, 12, 151-161.	1.9	59
77	Mcl-1 and FBW7 Control a Dominant Survival Pathway Underlying HDAC and Bcl-2 Inhibitor Synergy in Squamous Cell Carcinoma. Cancer Discovery, 2013, 3, 324-337.	7.7	60
78	Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition. Cancer Discovery, 2013, 3, 308-323.	7.7	549
79	Whole exome sequencing of adenoid cystic carcinoma. Journal of Clinical Investigation, 2013, 123, 2965-2968.	3.9	233
80	Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties. PLoS ONE, 2013, 8, e61318.	1.1	406
81	Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Research, 2012, 41, D955-D961.	6.5	2,363
82	MED12 Controls the Response to Multiple Cancer Drugs through Regulation of TGF- \hat{l}^2 Receptor Signaling. Cell, 2012, 151, 937-950.	13.5	371
83	Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012, 483, 570-575.	13.7	2,173
84	Exploiting genetic complexity in cancer to improve therapeutic strategies. Drug Discovery Today, 2012, 17, 188-193.	3.2	14
85	Genomics and the Continuum of Cancer Care. New England Journal of Medicine, 2011, 364, 340-350.	13.9	282
86	Discovery of a benzo[e]pyrimido-[5,4-b][1,4]diazepin-6(11H)-one as a Potent and Selective Inhibitor of Big MAP Kinase 1. ACS Medicinal Chemistry Letters, 2011, 2, 195-200.	1.3	59
87	Induction of Stable Drug Resistance in Human Breast Cancer Cells Using a Combinatorial Zinc Finger Transcription Factor Library. PLoS ONE, 2011, 6, e21112.	1.1	10
88	Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Molecular Medicine, 2010, 2, 146-158.	3.3	370
89	A Structure-Guided Approach to Creating Covalent FGFR Inhibitors. Chemistry and Biology, 2010, 17, 285-295.	6.2	127
90	Prognostic Significance of TRAIL Signaling Molecules in Stage II and III Colorectal Cancer. Clinical Cancer Research, 2010, 16, 3442-3451.	3.2	70

#	Article	IF	Citations
91	Acquired Resistance of Non–Small Cell Lung Cancer Cells to MET Kinase Inhibition Is Mediated by a Switch to Epidermal Growth Factor Receptor Dependency. Cancer Research, 2010, 70, 1625-1634.	0.4	146
92	A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations. Cell, 2010, 141, 69-80.	13.5	2,162
93	Ligand-Dependent Platelet-Derived Growth Factor Receptor (PDGFR)-α Activation Sensitizes Rare Lung Cancer and Sarcoma Cells to PDGFR Kinase Inhibitors. Cancer Research, 2009, 69, 3937-3946.	0.4	96
94	Sunitinib Prolongs Survival in Genetically Engineered Mouse Models of Multistep Lung Carcinogenesis. Cancer Prevention Research, 2009, 2, 330-337.	0.7	36
95	Personalized Cancer Therapy With Selective Kinase Inhibitors: An Emerging Paradigm in Medical Oncology. Journal of Clinical Oncology, 2009, 27, 5650-5659.	0.8	115
96	Clinical Features and Outcome of Patients With Non–Small-Cell Lung Cancer Who Harbor <i>EML4-ALK</i> . Journal of Clinical Oncology, 2009, 27, 4247-4253.	0.8	1,775
97	Elevated CRAF as a Potential Mechanism of Acquired Resistance to BRAF Inhibition in Melanoma. Cancer Research, 2008, 68, 4853-4861.	0.4	474
98	Genomic Alterations of Anaplastic Lymphoma Kinase May Sensitize Tumors to Anaplastic Lymphoma Kinase Inhibitors. Cancer Research, 2008, 68, 3389-3395.	0.4	388
99	The T790M "gatekeeper―mutation in <i>EGFR</i> mediates resistance to low concentrations of an irreversible EGFR inhibitor. Molecular Cancer Therapeutics, 2008, 7, 874-879.	1.9	192
100	Highâ€Throughput Lung Cancer Cell Line Screening for Genotypeâ€Correlated Sensitivity to an EGFR Kinase Inhibitor. Methods in Enzymology, 2008, 438, 331-341.	0.4	26
101	Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19936-19941.	3.3	334
102	Effect of p53 Status and STAT1 on Chemotherapy-Induced, Fas-Mediated Apoptosis in Colorectal Cancer. Cancer Research, 2005, 65, 8951-8960.	0.4	64
103	The Roles of Thymidylate Synthase and p53 in Regulating Fas-Mediated Apoptosis in Response to Antimetabolites. Clinical Cancer Research, 2004, 10, 3562-3571.	3.2	56
104	Predictive Markers for Colorectal Cancer: Current Status and Future Prospects. Clinical Colorectal Cancer, 2003, 2, 223-230.	1.0	9
105	Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling. Cancer Research, 2003, 63, 4602-6.	0.4	107
106	The role of thymidylate synthase induction in modulating p53-regulated gene expression in response to 5-fluorouracil and antifolates. Cancer Research, 2002, 62, 2644-9.	0.4	82