
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1931786/publications.pdf Version: 2024-02-01

YUEANC 7HU

#	Article	IF	CITATIONS
1	A responsive microneedle system for efficient anti-melanoma by combining self-enhanced chemodynamic therapy with photothermal therapy. Chemical Engineering Journal, 2022, 431, 133466.	6.6	19
2	Drug-loaded zeolite imidazole framework-8-functionalized bioglass scaffolds with antibacterial activity for bone repair. Ceramics International, 2022, 48, 6890-6898.	2.3	8
3	Engineering metalloporphyrin-integrated nanosystems for targeted sono-/chemo- dynamic therapy of leptomeningeal carcinomatosis through intrathecal administration. Chemical Engineering Journal, 2022, 437, 135373.	6.6	12
4	Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioactive Materials, 2022, 18, 383-398.	8.6	49
5	Porphyrinâ€basierte Metallâ€organische Gerüste für biomedizinische Anwendungen. Angewandte Chemie, 2021, 133, 5064-5091.	1.6	19
6	Porphyrinâ€Based Metal–Organic Frameworks for Biomedical Applications. Angewandte Chemie - International Edition, 2021, 60, 5010-5035.	7.2	311
7	Palladium Nanocrystalsâ€Engineered Metal–Organic Frameworks for Enhanced Tumor Inhibition by Synergistic Hydrogen/Photodynamic Therapy. Advanced Functional Materials, 2021, 31, 2006853.	7.8	49
8	Rational Construction of Light-Driven Catalysts for CO ₂ Reduction. Energy & Fuels, 2021, 35, 5696-5715.	2.5	18
9	Mesoporous organosilica nanoparticles: Degradation strategies and application in tumor therapy. View, 2021, 2, 20200117.	2.7	21
10	Recent advances in microneedles for tumor therapy and diagnosis. Applied Materials Today, 2021, 23, 101036.	2.3	11
11	Metal–Organic Framework-Based Nanoagents for Effective Tumor Therapy by Dual Dynamics-Amplified Oxidative Stress. ACS Applied Materials & Interfaces, 2021, 13, 45201-45213.	4.0	43
12	Forsterite-hydroxyapatite composite scaffolds with photothermal antibacterial activity for bone repair. Journal of Advanced Ceramics, 2021, 10, 1095-1106.	8.9	15
13	Recent Advances in Biomaterial Scaffolds for Integrative Tumor Therapy and Bone Regeneration. Advanced Therapeutics, 2021, 4, 2000212.	1.6	15
14	Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration. Chemical Engineering Journal, 2020, 382, 122928.	6.6	60
15	Enhanced bone regeneration of 3D printed β-Ca2SiO4 scaffolds by aluminum ions solid solution. Ceramics International, 2020, 46, 7783-7791.	2.3	13
16	2D MXeneâ€Integrated 3Dâ€Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction. Advanced Science, 2020, 7, 1901511.	5.6	185
17	3D printing of an integrated triphasic MBG-alginate scaffold with enhanced interface bonding for hard tissue applications. Journal of Materials Science: Materials in Medicine, 2020, 31, 113.	1.7	16
18	Nanoplatform-based cascade engineering for cancer therapy. Chemical Society Reviews, 2020, 49, 9057-9094.	18.7	109

#	Article	IF	CITATIONS
19	A facile synthesis of Ru/N–C as an efficient and cost-effective electrocatalyst for hydrogen evolution. New Journal of Chemistry, 2020, 44, 7962-7967.	1.4	4
20	Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceramics International, 2020, 46, 13607-13614.	2.3	18
21	Biodegradable hollow mesoporous organosilica-based nanosystems with dual stimuli-responsive drug delivery for efficient tumor inhibition by synergistic chemo- and photothermal therapy. Applied Materials Today, 2020, 19, 100655.	2.3	19
22	A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. Nanoscale, 2020, 12, 10265-10276.	2.8	47
23	Osteopontin sequence modified mesoporous calcium silicate scaffolds to promote angiogenesis in bone tissue regeneration. Journal of Materials Chemistry B, 2020, 8, 5849-5861.	2.9	18
24	Metal-organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release. Science and Technology of Advanced Materials, 2019, 20, 1043-1054.	2.8	60
25	Three-dimensional printing of CaTiO3 incorporated porous β-Ca2SiO4 composite scaffolds for bone regeneration. Applied Materials Today, 2019, 16, 132-140.	2.3	20
26	Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydrate Polymers, 2019, 221, 146-156.	5.1	113
27	A Selfâ€Assembled Flowerâ€Like Structure of Nickelâ€Cobalt Phosphide Nanosheets Supported on Nickel Foam for Electrochemical Hydrogen Evolution Reaction. ChemistrySelect, 2019, 4, 6295-6303.	0.7	8
28	3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Materials Science and Engineering C, 2019, 103, 109731.	3.8	116
29	3D-printed ternary SiO2CaO P2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration. Ceramics International, 2019, 45, 10997-11005.	2.3	21
30	Morphology―and Sizeâ€Controlled Fabrication of CdS from Flowerâ€Like to Spherical Structures and their Application for Highâ€Performance Photoactivity. European Journal of Inorganic Chemistry, 2019, 2019, 2086-2092.	1.0	11
31	3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Biomedical Materials (Bristol), 2019, 14, 065011.	1.7	36
32	Organosilicon polymer-derived ceramics: An overview. Journal of Advanced Ceramics, 2019, 8, 457-478.	8.9	119
33	Constructing the Band Alignment of Graphitic Carbon Nitride (g-C ₃ N ₄)/Copper(I) Oxide (Cu ₂ 0) Composites by Adjusting the Contact Facet for Superior Photocatalytic Activity. ACS Applied Energy Materials, 2019, 2, 1803-1811.	2.5	29
34	3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration. Applied Surface Science, 2019, 467-468, 345-353.	3.1	67
35	Dissolving Graphene/Poly(Acrylic Acid) Microneedles for Potential Transdermal Drug Delivery and Photothermal Therapy. Journal of Nanoscience and Nanotechnology, 2019, 19, 2453-2459.	0.9	18
36	Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction. Journal of Colloid and Interface Science, 2019, 536, 42-52.	5.0	32

#	Article	IF	CITATIONS
37	3D printing of pearl/CaSO ₄ composite scaffolds for bone regeneration. Journal of Materials Chemistry B, 2018, 6, 499-509.	2.9	48
38	3D printed porous β-Ca ₂ SiO ₄ scaffolds derived from preceramic resin and their physicochemical and biological properties. Science and Technology of Advanced Materials, 2018, 19, 495-506.	2.8	40
39	Composite-dissolving microneedle patches for chemotherapy and photothermal therapy in superficial tumor treatment. Biomaterials Science, 2018, 6, 1414-1423.	2.6	96
40	Magnetic mesoporous silica nanoparticles coated with thermo-responsive copolymer for potential chemo- and magnetic hyperthermia therapy. Microporous and Mesoporous Materials, 2018, 256, 1-9.	2.2	104
41	Novel Route to Feâ€Based Cathode as an Efficient Bifunctional Catalysts for Rechargeable Zn–Air Battery. Advanced Energy Materials, 2018, 8, 1800955.	10.2	146
42	3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. Journal of Materials Chemistry B, 2018, 6, 4397-4412.	2.9	187
43	3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery. Microporous and Mesoporous Materials, 2018, 272, 24-30.	2.2	70
44	Enhance the Bioactivity and Osseointegration of the Polyethyleneâ€Terephthalateâ€Based Artificial Ligament via Poly(Dopamine) Coating with Mesoporous Bioactive Glass. Advanced Engineering Materials, 2017, 19, 1600708.	1.6	17
45	Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo. Scientific Reports, 2017, 7, 42556.	1.6	88
46	Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials, 2017, 125, 23-37.	5.7	178
47	Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure. Scientific Reports, 2017, 7, 43599.	1.6	118
48	Achieving excellent activity and stability for oxygen reduction electrocatalysis by hollow mesoporous iron–nitrogen-doped graphitic carbon spheres. Journal of Materials Chemistry A, 2017, 5, 12243-12251.	5.2	48
49	Metal–Organic Framework/Graphene Quantum Dot Nanoparticles Used for Synergistic Chemo- and Photothermal Therapy. ACS Omega, 2017, 2, 1249-1258.	1.6	140
50	The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds. Microporous and Mesoporous Materials, 2017, 241, 11-20.	2.2	54
51	Mesoporous Silica Nanoparticles Capped with Graphene Quantum Dots for Potential Chemo–Photothermal Synergistic Cancer Therapy. Langmuir, 2017, 33, 591-599.	1.6	108
52	Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy. Journal of the American Chemical Society, 2017, 139, 1275-1284.	6.6	535
53	Effects of mesoporous bioglass on physicochemical and biological properties of calcium sulfate bone cements. Applied Materials Today, 2017, 9, 612-621.	2.3	25
54	Ultrafine WC nanoparticles anchored on co-encased, N-doped carbon nanotubes for efficient hydrogen evolution. Energy Storage Materials, 2017, 6, 104-111.	9.5	48

#	Article	IF	CITATIONS
55	Aldehyde-functionalized dendritic mesoporous silica nanoparticles as potential nanocarriers for pH-responsive protein drug delivery. Materials Science and Engineering C, 2017, 71, 452-459.	3.8	60
56	Graphene Quantum Dotsâ€Capped Magnetic Mesoporous Silica Nanoparticles as a Multifunctional Platform for Controlled Drug Delivery, Magnetic Hyperthermia, and Photothermal Therapy. Small, 2017, 13, 1602225.	5.2	379
57	Fe3O4/Polycaprolactone Microneedles with Controlled Drug Delivery and Magnetic Hyperthermia. Nano Advances, 2017, 2, 29-35.	0.4	6
58	In situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts. Nanoscale, 2016, 8, 18134-18142.	2.8	52
59	Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration. Journal of Materials Chemistry B, 2016, 4, 7452-7463.	2.9	55
60	Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia. Science and Technology of Advanced Materials, 2016, 17, 229-238.	2.8	61
61	Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair. Journal of Materials Science, 2016, 51, 836-844.	1.7	46
62	A smart magnetic nanosystem with controllable drug release and hyperthermia for potential cancer therapy. RSC Advances, 2015, 5, 99875-99883.	1.7	31
63	DNA-capped Fe ₃ O ₄ /SiO ₂ magnetic mesoporous silica nanoparticles for potential controlled drug release and hyperthermia. RSC Advances, 2015, 5, 22365-22372.	1.7	74
64	3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy. Acta Biomaterialia, 2015, 16, 145-155.	4.1	114
65	Effect of amino groups of mesoporous silica nanoparticles on CpG oligodexynucleotide delivery. Science and Technology of Advanced Materials, 2015, 16, 045006.	2.8	23
66	Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomaterialia, 2015, 12, 270-280.	4.1	138
67	Effects of functional groups on the structure, physicochemical and biological properties of mesoporous bioactive glass scaffolds. Journal of Materials Chemistry B, 2015, 3, 1612-1623.	2.9	47
68	Binding of CpG oligodeoxynucleotides to mesoporous silica nanoparticles for enhancing delivery efficiency. Microporous and Mesoporous Materials, 2015, 204, 91-98.	2.2	27
69	Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomaterialia, 2014, 10, 2269-2281.	4.1	278
70	Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Dalton Transactions, 2014, 43, 15482-15490.	1.6	102
71	Magnetic mesoporous silica nanoparticles for CpG delivery to enhance cytokine induction via toll-like receptor 9. RSC Advances, 2014, 4, 45823-45830.	1.7	14
72	Three dimensionally printed mesoporous bioactive glass and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. Journal of Materials Chemistry B, 2014, 2, 6106.	2.9	91

#	Article	IF	CITATIONS
73	3D-printed magnetic Fe ₃ O ₄ /MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. Journal of Materials Chemistry B, 2014, 2, 7583-7595.	2.9	245
74	Mesoporous Silica Nanoparticles/Hydroxyapatite Composite Coated Implants to Locally Inhibit Osteoclastic Activity. ACS Applied Materials & Interfaces, 2014, 6, 5456-5466.	4.0	33
75	Magnetic mesoporous bioactive glass scaffolds: preparation, physicochemistry and biological properties. Journal of Materials Chemistry B, 2013, 1, 1279.	2.9	53
76	Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Science and Technology of Advanced Materials, 2013, 14, 045005.	2.8	65
77	Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties. Acta Biomaterialia, 2013, 9, 6723-6731.	4.1	66
78	Simple Cocasting Method to Prepare Magnetic Mesoporous FePt/C Composites and Their Protein Adsorption Property. Journal of Chemistry, 2013, 2013, 1-7.	0.9	2
79	Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials. Science and Technology of Advanced Materials, 2013, 14, 055009.	2.8	19
80	Fabrication of novel collagen-silica hybrid membranes with tailored biodegradation and strong cell contact guidance ability. Journal of Materials Chemistry, 2012, 22, 21885.	6.7	27
81	Composition–structure–property relationships of the CaO–MxOy–SiO2–P2O5 (M = Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds. Journal of Materials Chemistry, 2011, 21, 9208.	6.7	59
82	Hollow Mesoporous Silica/Poly(<scp>l</scp> -lysine) Particles for Codelivery of Drug and Gene with Enzyme-Triggered Release Property. Journal of Physical Chemistry C, 2011, 115, 13630-13636.	1.5	119
83	Cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN)-capped hollow mesoporous silica particles for enzyme-triggered drug delivery. Dalton Transactions, 2011, 40, 10203.	1.6	33
84	Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous and Mesoporous Materials, 2009, 118, 176-182.	2.2	148
85	Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Microporous and Mesoporous Materials, 2008, 112, 494-503.	2.2	166