Yoichi Sakakibara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1931563/publications.pdf

Version: 2024-02-01

		471509	477307
55	951	17	29
papers	citations	h-index	g-index
57	57	57	1108
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	cDNA Cloning, Expression, and Characterization of the Human Bifunctional ATP Sulfurylase/Adenosine 5′-Phosphosulfate Kinase Enzyme. Bioscience, Biotechnology and Biochemistry, 1998, 62, 1037-1040.	1.3	88
2	Ubiquitin-Proteasome Dependent Regulation of the GOLDEN2-LIKE 1 Transcription Factor in Response to Plastid Signals. Plant Physiology, 2017, 173, 524-535.	4.8	74
3	Updated perspectives on the cytosolic sulfotransferases (SULTs) and SULT-mediated sulfation. Bioscience, Biotechnology and Biochemistry, 2017, 81, 63-72.	1.3	70
4	Highly conserved mouse and human brain sulfotransferases: molecular cloning, expression, and functional characterization. Gene, 2002, 285, 39-47.	2.2	61
5	Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction. Nature Communications, 2013, 4, 1572.	12.8	57
6	Molecular Cloning, Expression, and Functional Characterization of Novel Mouse Sulfotransferases. Biochemical and Biophysical Research Communications, 1998, 247, 681-686.	2.1	51
7	Differential Enzymatic Characteristics and Tissue-Specific Expression of Human TPST-1 and TPST-2. Journal of Biochemistry, 2006, 140, 731-737.	1.7	45
8	Purification, Characterization, and Molecular Cloning of A Novel Rat Liver Dopa/Tyrosine Sulfotransferase. Journal of Biological Chemistry, 1995, 270, 30470-30478.	3.4	41
9	Inhibition of proliferation by agricultural plant extracts in seven human adult T-cell leukaemia (ATL)-related cell lines. Journal of Natural Medicines, 2011, 65, 651-655.	2.3	37
10	Sulfation of Flavonoids and Other Phenolic Dietary Compounds by the Human Cytosolic Sulfotransferases. Biochemical and Biophysical Research Communications, 2001, 285, 1175-1179.	2.1	36
11	Sulfation of opioid drugs by human cytosolic sulfotransferases: Metabolic labeling study and enzymatic analysis. European Journal of Pharmaceutical Sciences, 2014, 62, 40-48.	4.0	30
12	Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis. Journal of Biochemistry, 2015, 158, mvv062.	1.7	28
13	Molecular Cloning, Expression and Characterization of A Novel Mouse SULT6 Cytosolic Sulfotransferase. Journal of Biochemistry, 2009, 146, 399-405.	1.7	27
14	Enzymic sulphation of dopa and tyrosine isomers by HepG2 human hepatoma cells: stereoselectivity and stimulation by Mn2+. Biochemical Journal, 1996, 314, 151-158.	3.7	26
15	Structural basis for the broad substrate specificity of the human tyrosylprotein sulfotransferase-1. Scientific Reports, 2017, 7, 8776.	3.3	21
16	Sulfation of vitamin D ₃ â€related compoundsâ€"identification and characterization of the responsible human cytosolic sulfotransferases. FEBS Letters, 2017, 591, 2417-2425.	2,8	21
17	Sulfation of afimoxifene, endoxifen, raloxifene, and fulvestrant by the human cytosolic sulfotransferases (SULTs): A systematic analysis. Journal of Pharmacological Sciences, 2015, 128, 144-149.	2.5	19
18	\hat{l} ±-Lipoic acid suppresses migration and invasion via downregulation of cell surface \hat{l}^21 -integrin expression in bladder cancer cells. Journal of Clinical Biochemistry and Nutrition, 2014, 54, 18-25.	1.4	15

#	Article	IF	Citations
19	Enzymatic Sulfation of Tocopherols and Tocopherol Metabolites by Human Cytosolic Sulfotransferases. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1951-1956.	1.3	14
20	A novel procedure for the assessment of the antioxidant capacity of food components. Analytical Biochemistry, 2016, 507, 7-12.	2.4	14
21	Human Cytosolic Sulphotransferase SULT1C3: genomic analysis and functional characterization of splice variant SULT1C3a and SULT1C3d. Journal of Biochemistry, 2017, 162, 403-414.	1.7	12
22	Sulfation of catecholamines and serotonin by SULT1A3 allozymes. Biochemical Pharmacology, 2018, 151, 104-113.	4.4	12
23	Human cytosolic sulfotransferase SULT1C4 mediates the sulfation of doxorubicin and epirubicin. Drug Metabolism and Pharmacokinetics, 2016, 31, 163-166.	2.2	11
24	A substrate-bound structure of cyanobacterial biliverdin reductase identifies stacked substrates as critical for activity. Nature Communications, 2017, 8, 14397.	12.8	9
25	The critical role of His48 in mouse cytosolic sulfotransferase SULT2A8 for the 7α-hydroxyl sulfation of bile acids. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1359-1365.	1.3	9
26	Identification and characterization of 5î±-cyprinol-sulfating cytosolic sulfotransferases (Sults) in the zebrafish (Danio rerio). Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 120-127.	2.5	8
27	Effects of Human Sulfotransferase 2A1 Genetic Polymorphisms 3 on the Sulfation of Tibolone. European Journal of Drug Metabolism and Pharmacokinetics, 2018, 43, 415-421.	1.6	8
28	On the role of genetic polymorphisms in the sulfation of cholesterol by human cytosolic sulphotransferase SULT2B1b. Journal of Biochemistry, 2018, 164, 215-221.	1.7	8
29	Radical scavenging effects of 1-naphthol, 2-naphthol, and their sulfate-conjugates. Journal of Toxicological Sciences, 2018, 43, 213-221.	1.5	8
30	Identification and characterization of the zebrafish glutathione Sâ€transferase Piâ€1. Journal of Biochemical and Molecular Toxicology, 2017, 31, e21948.	3.0	7
31	Effects of genetic polymorphisms on the sulfation of dehydroepiandrosterone and pregnenolone by human cytosolic sulfotransferase SULT2A1. Biochemistry and Cell Biology, 2018, 96, 655-662.	2.0	7
32	Effect of SULT2B1 genetic polymorphisms on the sulfation of dehydroepiandrosterone and pregnenolone by SULT2B1b allozymes. Molecular and Cellular Endocrinology, 2019, 496, 110535.	3.2	7
33	Varietal differences in flavonoid and antioxidant activity in Japanese soybean accessions. Bioscience, Biotechnology and Biochemistry, 2021, 85, 916-922.	1.3	7
34	Identification of a Bioactive Compound against Adult T-cell Leukaemia from Bitter Gourd Seeds. Plants, 2014, 3, 18-26.	3.5	6
35	Sulfation of benzyl alcohol by the human cytosolic sulfotransferases (SULTs): a systematic analysis. Journal of Applied Toxicology, 2016, 36, 1090-1094.	2.8	6
36	Regioselective production of sulfated polyphenols using human cytosolic sulfotransferase-expressing Escherichia coli cells. Journal of Bioscience and Bioengineering, 2017, 124, 84-90.	2.2	6

3

#	Article	IF	Citations
37	î" 4-3-ketosteroids as a new class of substrates for the cytosolic sulfotransferases. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2883-2890.	2.4	6
38	Proteolytic Maturation of the Outer Membrane <i>c</i> -Type Cytochrome OmcZ by a Subtilisin-Like Serine Protease Is Essential for Optimal Current Production by Geobacter sulfurreducens. Applied and Environmental Microbiology, 2021, 87, e0261720.	3.1	5
39	Sulfate conjugation of daphnetin by the human cytosolic sulfotransferases. Journal of Ethnopharmacology, 2016, 189, 250-252.	4.1	4
40	Sulfation of 6-hydroxymelatonin, N-acetylserotonin and 4-hydroxyramelteon by the human cytosolic sulfotransferases (SULTs). Xenobiotica, 2016, 46, 612-619.	1.1	4
41	Investigation of the effects of indoxyl sulfate, a uremic toxin, on the intracellular oxidation level and phagocytic activity using an HL-60-differentiated human macrophage cell model. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1023-1029.	1.3	4
42	Cytosolic Sulfotransferases and Environmental Estrogenic Chemicals. Journal of Pesticide Sciences, 2005, 30, 345-353.	1.4	4
43	Evaluation of Multiple Antioxidant Activities in Food Components. Journal of the Japanese Society for Food Science and Technology, 2017, 64, 457-463.	0.1	3
44	The crystal structure of mouse SULT2A8 reveals the mechanism of 7α-hydroxyl, bile acid sulfation. Biochemical and Biophysical Research Communications, 2021, 562, 15-20.	2.1	3
45	Effects of indole and indoxyl on the intracellular oxidation level and phagocytic activity of differentiated HL-60 human macrophage cells. Journal of Toxicological Sciences, 2020, 45, 569-579.	1.5	3
46	Sulfation of 6-Gingerol by the Human Cytosolic Sulfotransferases: A Systematic Analysis. Planta Medica, 2016, 82, 238-243.	1.3	2
47	Molecular cloning and characterization of common marmoset SULT1C subfamily members that catalyze the sulfation of thyroid hormones. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2113-2120.	1.3	2
48	Identification of zebrafish steroid sulfatase and comparative analysis of the enzymatic properties with human steroid sulfatase. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 110-117.	2.5	1
49	Drug metabolism by sulfation and effects of agricultural chemicals. Journal of Pesticide Sciences, 2011, 36, 297-299.	1.4	1
50	A proteomic approach for the analysis of <i>S</i> -nitrosylated proteins using a fluorescence labeling technique. Journal of Electrophoresis, 2016, 60, 5-14.	0.4	1
51	Studies on the Anti-oxidative Stress Effect of Shiitake Mushroom. Journal of the Japanese Society for Food Science and Technology, 2016, 63, 199-208.	0.1	1
52	Effect of Retort Processing and Storage on Imidazole Dipeptide Content of Chicken Meat. Journal of the Japanese Society for Food Science and Technology, 2019, 66, 210-214.	0.1	1
53	2P-019 X-ray crystal structure of mouse sulfotransferase SULT5A1(The 46th Annual Meeting of the) Tj ETQq1 1	0.784314 0.1	rgBT /Overlo
54	Past, present, and future of plant sulfotransferases. Japanese Journal of Pesticide Science, 2016, 41, 198-202.	0.0	0

#	Article	IF	CITATIONS
55	Multiple Functions of Sulfate Ion Metabolism During the Evolution: Multiple Functions of Cytosolic Sulfotransferases, SULTs. Kagaku To Seibutsu, 2020, 58, 511-519.	0.0	0