Xing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1931374/publications.pdf Version: 2024-02-01

XINC 7HOU

#	Article	IF	CITATIONS
1	Ultrathin SnSe ₂ Flakes Grown by Chemical Vapor Deposition for Highâ€Performance Photodetectors. Advanced Materials, 2015, 27, 8035-8041.	11.1	460
2	Tunneling Diode Based on WSe ₂ /SnS ₂ Heterostructure Incorporating High Detectivity and Responsivity. Advanced Materials, 2018, 30, 1703286.	11.1	293
3	Largeâ€Size Growth of Ultrathin SnS ₂ Nanosheets and High Performance for Phototransistors. Advanced Functional Materials, 2016, 26, 4405-4413.	7.8	279
4	2D Layered Materialâ€Based van der Waals Heterostructures for Optoelectronics. Advanced Functional Materials, 2018, 28, 1706587.	7.8	279
5	Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy, 2018, 51, 45-53.	8.2	209
6	Vertical heterostructures based on SnSe ₂ /MoS ₂ for high performance photodetectors. 2D Materials, 2017, 4, 025048.	2.0	183
7	Booming Development of Group IV–VI Semiconductors: Fresh Blood of 2D Family. Advanced Science, 2016, 3, 1600177.	5.6	181
8	High—Performance Solarâ€Blind Deep Ultraviolet Photodetector Based on Individual Singleâ€Crystalline Zn ₂ GeO ₄ Nanowire. Advanced Functional Materials, 2016, 26, 704-712.	7.8	163
9	Highly Anisotropic GeSe Nanosheets for Phototransistors with Ultrahigh Photoresponsivity. Advanced Science, 2018, 5, 1800478.	5.6	163
10	Decorating Perovskite Quantum Dots in TiO ₂ Nanotubes Array for Broadband Response Photodetector. Advanced Functional Materials, 2017, 27, 1703115.	7.8	142
11	Broadband convolutional processing using band-alignment-tunable heterostructures. Nature Electronics, 2022, 5, 248-254.	13.1	131
12	Spaceâ€Confined Chemical Vapor Deposition Synthesis of Ultrathin HfS ₂ Flakes for Optoelectronic Application. Advanced Functional Materials, 2017, 27, 1702918.	7.8	122
13	Strong In-Plane Anisotropies of Optical and Electrical Response in Layered Dimetal Chalcogenide. ACS Nano, 2017, 11, 10264-10272.	7.3	116
14	2D Ternary Chalcogenides. Advanced Optical Materials, 2018, 6, 1800058.	3.6	114
15	High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition. Journal of Materials Chemistry C, 2016, 4, 2111-2116.	2.7	113
16	Van der Waals Integration Based on Twoâ€Dimensional Materials for Highâ€Performance Infrared Photodetectors. Advanced Functional Materials, 2021, 31, 2103106.	7.8	112
17	Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chemical Society Reviews, 2019, 48, 4639-4654.	18.7	108
18	Highly Inâ€Plane Anisotropic 2D PdSe ₂ for Polarized Photodetection with Orientation Selectivity. Advanced Functional Materials, 2021, 31, 2006774.	7.8	100

XING ZHOU

#	Article	IF	CITATIONS
19	Ultrathin 2D GeSe ₂ Rhombic Flakes with High Anisotropy Realized by Van der Waals Epitaxy. Advanced Functional Materials, 2017, 27, 1703858.	7.8	95
20	Two-dimensional inorganic molecular crystals. Nature Communications, 2019, 10, 4728.	5.8	91
21	Liquidâ€Alloyâ€Assisted Growth of 2D Ternary Ga ₂ In ₄ S ₉ toward Highâ€Performance UV Photodetection. Advanced Materials, 2019, 31, e1806306.	11.1	90
22	Pâ€GaSe/Nâ€MoS ₂ Vertical Heterostructures Synthesized by van der Waals Epitaxy for Photoresponse Modulation. Small, 2018, 14, 1702731.	5.2	87
23	Selfâ€Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for Highâ€Performance Photodetectors. Advanced Functional Materials, 2018, 28, 1800181.	7.8	86
24	Halide-Induced Self-Limited Growth of Ultrathin Nonlayered Ge Flakes for High-Performance Phototransistors. Journal of the American Chemical Society, 2018, 140, 12909-12914.	6.6	85
25	Airâ€6table 2D Cr ₅ Te ₈ Nanosheets with Thicknessâ€Tunable Ferromagnetism. Advanced Materials, 2022, 34, e2107512.	11.1	77
26	Hydrogenâ€Assisted Growth of Ultrathin Te Flakes with Giant Gateâ€Dependent Photoresponse. Advanced Functional Materials, 2019, 29, 1906585.	7.8	62
27	Junction Fieldâ€Effect Transistors Based on PdSe ₂ /MoS ₂ Heterostructures for Photodetectors Showing High Responsivity and Detectivity. Advanced Functional Materials, 2021, 31, 2106105.	7.8	61
28	Epitaxial Growth of Rectangle Shape MoS ₂ with Highly Aligned Orientation on Twofold Symmetry aâ€Plane Sapphire. Small, 2020, 16, e2000596.	5.2	53
29	Growth of Ultrathin Ternary Teallite (PbSnS2) Flakes for Highly Anisotropic Optoelectronics. Matter, 2020, 2, 977-987.	5.0	53
30	Giantâ€Enhanced SnS ₂ Photodetectors with Broadband Response through Oxygen Plasma Treatment. Advanced Functional Materials, 2020, 30, 2001650.	7.8	48
31	Strong In-Plane Anisotropic SiP ₂ as a IV–V 2D Semiconductor for Polarized Photodetection. ACS Nano, 2021, 15, 20442-20452.	7.3	45
32	Synthesis of 2Hâ€1T′ WS ₂ â€ReS ₂ Heterophase Structures with Atomically Sharp Interface via Hydrogenâ€Triggered Oneâ€Pot Growth. Advanced Functional Materials, 2020, 30, 1910169.	7.8	42
33	Saltâ€Assisted Growth of Pâ€ŧype Cu ₉ S ₅ Nanoflakes for Pâ€N Heterojunction Photodetectors with High Responsivity. Advanced Functional Materials, 2020, 30, 1908382.	7.8	40
34	One-step synthesis of p-type GaSe nanoribbons and their excellent performance in photodetectors and phototransistors. Journal of Materials Chemistry C, 2016, 4, 7817-7823.	2.7	39
35	Salt-Assisted Growth of Ultrathin GeSe Rectangular Flakes for Phototransistors with Ultrahigh Responsivity. ACS Applied Materials & Interfaces, 2019, 11, 23353-23360.	4.0	38
36	Excellent Excitonic Photovoltaic Effect in 2D CsPbBr ₃ /CdS Heterostructures. Advanced Functional Materials, 2020, 30, 2006166.	7.8	38

Хімс Zhou

#	Article	IF	CITATIONS
37	Recent Advances in 2D Rare Earth Materials. Advanced Functional Materials, 2021, 31, .	7.8	37
38	Large-scale synthesis of 2D metal dichalcogenides. Journal of Materials Chemistry C, 2018, 6, 4627-4640.	2.7	35
39	Intercalation Strategy in 2D Materials for Electronics and Optoelectronics. Small Methods, 2021, 5, e2100567.	4.6	32
40	Low‣ymmetry and Nontoxic 2D SiP with Strong Polarization‣ensitivity and Fast Photodetection. Advanced Optical Materials, 2021, 9, 2100198.	3.6	29
41	Nonlayered CdSe Flakes Homojunctions. Advanced Functional Materials, 2020, 30, 1908902.	7.8	28
42	High- <i>T</i> _C Two-Dimensional Ferroelectric CuCrS ₂ Grown <i>via</i> Chemical Vapor Deposition. ACS Nano, 2022, 16, 8141-8149.	7.3	23
43	2D semiconductors towards high-performance ultraviolet photodetection. Journal Physics D: Applied Physics, 2019, 52, 303002.	1.3	22
44	Geometry dependent photoconductivity of In2S3 kinks synthesized by kinetically controlled thermal deposition. Nano Research, 2016, 9, 3848-3857.	5.8	20
45	Controllable Carrier Type in Boron Phosphide Nanowires Toward Homostructural Optoelectronic Devices. ACS Applied Materials & Interfaces, 2018, 10, 10296-10303.	4.0	20
46	Synergistic Additiveâ€Assisted Growth of 2D Ternary In ₂ SnS ₄ with Giant Gateâ€Tunable Polarizationâ€Sensitive Photoresponse. Small, 2021, 17, e2008078.	5.2	18
47	Synthesis of Large-Area Uniform MoS ₂ –WS ₂ Lateral Heterojunction Nanosheets for Photodetectors. ACS Applied Nano Materials, 2021, 4, 5522-5530.	2.4	17
48	Universal p-Type Doping via Lewis Acid for 2D Transition-Metal Dichalcogenides. ACS Nano, 2022, 16, 4884-4891.	7.3	17
49	Spaceâ€Confined Growth of 2D InI Showing High Sensitivity in Photodetection. Advanced Electronic Materials, 2020, 6, 2000284.	2.6	14
50	Stoichiometric Effect on Optoelectronic Properties of Composition‶unable CdS _{1â''} <i>_x</i> Se <i>_x</i> Nanowires. Advanced Optical Materials, 2017, 5, 1600877.	3.6	13
51	Growth of Highly Anisotropic 2D Ternary CaTe 2 O 5 Flakes on Molten Glass. Advanced Functional Materials, 2019, 29, 1903216.	7.8	13
52	2D Rare Earth Material (EuOCl) with Ultraâ€Narrow Photoluminescence at Room Temperature. Small, 2021, 17, e2100137.	5.2	12
53	Flexible Photodetectors with High Responsivity and Broad Spectral Response Employing Ternary Sn _{<i>x</i>} Cd _{1–<i>x</i>} S Micronanostructures. ACS Applied Electronic Materials, 2021, 3, 4151-4161.	2.0	12
54	Room-Temperature Ferroelectricity in 2D Metal–Tellurium–Oxyhalide Cd ₇ Te ₇ Cl ₈ O ₁₇ <i>via</i> Selenium-Induced Selective-Bonding Growth. ACS Nano, 2021, 15, 16525-16532.	7.3	12

Xing Zhou

#	Article	IF	CITATIONS
55	Programmable Polarization of 2D Anisotropic Rare Earth Material for Images Transmission and Encryption. Advanced Optical Materials, 2022, 10, .	3.6	10
56	GeSe/MoTe2 vdW heterostructure for UV–VIS–NIR photodetector with fast response. Applied Physics Letters, 2022, 121, .	1.5	10
57	Photodetectors: Ultrathin SnSe2Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 8119-8119.	11.1	6
58	2D Van der Waals Rare Earth Material Based Ratiometric Luminescence Thermography Integrated on Micro–Nano Devices Vertically. Advanced Optical Materials, 2022, 10, .	3.6	6
59	An improved inverse kinematics solution for 6-DOF robot manipulators with offset wrists. Robotica, 2022, 40, 2275-2294.	1.3	5
60	Electricâ€Tunable Photoluminescence of 2D ErOCl for Highâ€Security Encryption of Programmable Information. Advanced Optical Materials, 2022, 10, .	3.6	4
61	Electrical Characteristics: High-Performance Solar-Blind Deep Ultraviolet Photodetector Based on Individual Single-Crystalline Zn2GeO4Nanowire (Adv. Funct. Mater. 5/2016). Advanced Functional Materials, 2016, 26, 804-804.	7.8	3
62	Twoâ€Dimensional Metal Chalcogenide Heterostructures: Designed Growth and Emerging Novel Applications. Advanced Materials Interfaces, 2021, 8, 2100515.	1.9	3
63	Two-dimensional metal halides. Journal Physics D: Applied Physics, 2021, 54, 013002.	1.3	3
64	Optical Logic Operation Encryption on ZnTe Flake. Advanced Optical Materials, 0, , 2200560.	3.6	2
65	Recent advances in 2D graphene reinforced metal matrix composites. Nanotechnology, 2022, 33, 062003.	1.3	0
66	Fresh Blood of Two-Dimensional Materials: Group IV-VI Semiconductors. Zhongguo Jiguang/Chinese Journal of Lasers, 2017, 44, 0703006.	0.2	0