Lianhui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1931322/publications.pdf

Version: 2024-02-01

291 16,101 71 111
papers citations h-index g-index

295 295 295 19972 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Preparation of MoS ₂ â€Polyvinylpyrrolidone Nanocomposites for Flexible Nonvolatile Rewritable Memory Devices with Reduced Graphene Oxide Electrodes. Small, 2012, 8, 3517-3522.	10.0	393
2	An Exonuclease Illâ€Powered, Onâ€Particle Stochastic DNA Walker. Angewandte Chemie - International Edition, 2017, 56, 1855-1858.	13.8	325
3	Singleâ€Layer Transition Metal Dichalcogenide Nanosheetâ€Based Nanosensors for Rapid, Sensitive, and Multiplexed Detection of DNA. Advanced Materials, 2015, 27, 935-939.	21.0	322
4	General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS ₂ nanosheets and the enhanced catalytic activity of Pd–MoS ₂ for methanol oxidation. Nanoscale, 2014, 6, 5762-5769.	5.6	311
5	Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Advances, 2012, 2, 4364.	3.6	285
6	Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Progress in Polymer Science, 2012, 37, 1192-1264.	24.7	280
7	The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials, 2010, 31, 4829-4834.	11.4	265
8	Microwave Synthesis of Waterâ€Dispersed CdTe/CdS/ZnS Coreâ€Shellâ€Shell Quantum Dots with Excellent Photostability and Biocompatibility. Advanced Materials, 2008, 20, 3416-3421.	21.0	261
9	Microwaveâ€Assisted Preparation of White Fluorescent Graphene Quantum Dots as a Novel Phosphor for Enhanced Whiteâ€Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 2739-2744.	14.9	223
10	Recent Advances in Synthesis and Biomedical Applications of Twoâ€Dimensional Transition Metal Dichalcogenide Nanosheets. Small, 2017, 13, 1602660.	10.0	221
11	Creating SERS Hot Spots on MoS ₂ Nanosheets with in Situ Grown Gold Nanoparticles. ACS Applied Materials & Discrete Services (2014), 6, 18735-18741.	8.0	217
12	High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly Sensitive and Selective Fluorescence DNA Sensors. Journal of the American Chemical Society, 2015, 137, 10430-10436.	13.7	214
13	Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Advances, 2014, 4, 27625.	3.6	206
14	DNA Hydrogel with Aptamer-Toehold-Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis. Nano Letters, 2017, 17, 5193-5198.	9.1	204
15	Fewâ€Layer Graphdiyne Nanosheets Applied for Multiplexed Realâ€Time DNA Detection. Advanced Materials, 2017, 29, 1606755.	21.0	198
16	Synthesis of graphene–carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. Journal of Materials Chemistry, 2012, 22, 17044.	6.7	197
17	Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosensors and Bioelectronics, 2011, 26, 3881-3886.	10.1	191
18	Efficient Bacteria Killing by Cu ₂ WS ₄ Nanocrystals with Enzyme-like Properties and Bacteria-Binding Ability. ACS Nano, 2019, 13, 13797-13808.	14.6	190

#	Article	IF	CITATIONS
19	Solving mazes with single-molecule DNA navigators. Nature Materials, 2019, 18, 273-279.	27.5	190
20	Microwave-Assisted Synthesis of Water-Dispersed CdTe Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution. Chemistry of Materials, 2007, 19, 359-365.	6.7	181
21	Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Materials Chemistry Frontiers, 2017, 1, 24-36.	5.9	173
22	Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet. Biosensors and Bioelectronics, 2017, 94, 552-559.	10.1	169
23	Clamped Hybridization Chain Reactions for the Selfâ€Assembly of Patterned DNA Hydrogels. Angewandte Chemie - International Edition, 2017, 56, 2171-2175.	13.8	164
24	Dual-Target Electrochemical Biosensing Based on DNA Structural Switching on Gold Nanoparticle-Decorated MoS ₂ Nanosheets. ACS Applied Materials & Diterfaces, 2016, 8, 6826-6833.	8.0	155
25	Multivalent Capture and Detection of Cancer Cells with DNA Nanostructured Biosensors and Multibranched Hybridization Chain Reaction Amplification. Analytical Chemistry, 2014, 86, 7843-7848.	6.5	154
26	The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors. Journal of Materials Chemistry A, 2013, 1, 12818.	10.3	148
27	DNA nanotechnology-enabled biosensors. Biosensors and Bioelectronics, 2016, 76, 68-79.	10.1	147
28	Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Mikrochimica Acta, 2014, 181, 1497-1503.	5.0	145
29	Aqueous phase preparation of ultrasmall MoSe ₂ nanodots for efficient photothermal therapy of cancer cells. Nanoscale, 2016, 8, 2720-2726.	5.6	142
30	Label-Free Electrochemical Sensing Platform for MicroRNA-21 Detection Using Thionine and Gold Nanoparticles Co-Functionalized MoS ₂ Nanosheet. ACS Applied Materials & Detection Using Thionine and Gold Nanoparticles Co-Functionalized MoS ₂ Nanosheet. ACS Applied Materials & Detection Using Thionine and Gold Nanoparticles (Section 1988).	8.0	141
31	DNA-Conjugated Quantum Dot Nanoprobe for High-Sensitivity Fluorescent Detection of DNA and micro-RNA. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1152-1157.	8.0	138
32	Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction. Polymer Chemistry, 2015, 6, 7027-7035.	3.9	131
33	Facile Synthesis of a MoS ₂ –Prussian Blue Nanocube Nanohybrid-Based Electrochemical Sensing Platform for Hydrogen Peroxide and Carcinoembryonic Antigen Detection. ACS Applied Materials & Detection. ACS Applied & Detection. ACS Applied Materials & Detection. ACS Applied Materials & Detection. ACS Applied Materials & Detection. ACS Applied & Detection. ACS Applie	8.0	124
34	High-performance CdS–ZnS core–shell nanorod array photoelectrode for photoelectrochemical hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 535-541.	10.3	123
35	Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. Science Advances, 2019, 5, eaau4506.	10.3	118
36	A Rational Molecular Design of \hat{l}^2 -Phase Polydiarylfluorenes: Synthesis, Morphology, and Organic Lasers. Macromolecules, 2014, 47, 1001-1007.	4.8	115

3

#	Article	IF	CITATIONS
37	Two-dimensional nanomaterials for biosensing applications. TrAC - Trends in Analytical Chemistry, 2019, 119, 115610.	11.4	113
38	On-Electrode Synthesis of Shape-Controlled Hierarchical Flower-Like Gold Nanostructures for Efficient Interfacial DNA Assembly and Sensitive Electrochemical Sensing of MicroRNA. Small, 2016, 12, 3794-3801.	10.0	110
39	Cu ₂ MoS ₄ Nanozyme with NIRâ€II Light Enhanced Catalytic Activity for Efficient Eradication of Multidrugâ€Resistant Bacteria. Small, 2020, 16, e2001099.	10.0	110
40	MoS ₂ @polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of <i>Staphylococcus aureus</i> biofilms and wound infection. Nanoscale, 2018, 10, 16711-16720.	5.6	109
41	Highly Sensitive and Selective Determination of Dopamine in the Presence of Ascorbic Acid Using Gold Nanoparticlesâ€Decorated MoS ₂ Nanosheets Modified Electrode. Electroanalysis, 2013, 25, 2523-2529.	2.9	108
42	PolyA-Mediated DNA Assembly on Gold Nanoparticles for Thermodynamically Favorable and Rapid Hybridization Analysis. Analytical Chemistry, 2016, 88, 4949-4954.	6.5	107
43	DNAâ€Templated Silver Nanoclusters for Multiplexed Fluorescent DNA Detection. Small, 2015, 11, 1385-1389.	10.0	106
44	Ultrasensitive sliver nanorods array SERS sensor for mercury ions. Biosensors and Bioelectronics, 2017, 87, 59-65.	10.1	104
45	Highly Biocompatible Chlorin e6-Loaded Chitosan Nanoparticles for Improved Photodynamic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9980-9987.	8.0	103
46	Shape-controlled gold nanoparticles supported on MoS ₂ nanosheets: synergistic effect of thionine and MoS ₂ and their application for electrochemical label-free immunosensing. Nanoscale, 2015, 7, 19129-19135.	5. 6	102
47	Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation. Chemical Communications, 2016, 52, 529-532.	4.1	102
48	Structural DNA Nanotechnology for Intelligent Drug Delivery. Small, 2014, 10, 4626-4635.	10.0	101
49	Real-Time Imaging of Single-Molecule Enzyme Cascade Using a DNA Origami Raft. Journal of the American Chemical Society, 2017, 139, 17525-17532.	13.7	100
50	Uniform Au@Pt core–shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. Nanoscale, 2016, 8, 602-608.	5.6	98
51	A Bidirectional Deep Neural Network for Accurate Silicon Color Design. Advanced Materials, 2019, 31, e1905467.	21.0	98
52	Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles. Science Advances, 2020, 6, eaaz8204.	10.3	98
53	Single-Molecule Analysis of MicroRNA and Logic Operations Using a Smart Plasmonic Nanobiosensor. Journal of the American Chemical Society, 2018, 140, 3988-3993.	13.7	97
54	Probing Cellular Molecules with PolyA-Based Engineered Aptamer Nanobeacon. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8014-8020.	8.0	95

#	Article	IF	CITATIONS
55	Goldâ€Nanoparticleâ€Mediated Jigsawâ€Puzzleâ€like Assembly of Supersized Plasmonic DNA Origami. Angewandte Chemie - International Edition, 2015, 54, 2966-2969.	13.8	94
56	The self-assembly of shape controlled functionalized graphene–MnO ₂ composites for application as supercapacitors. Journal of Materials Chemistry A, 2014, 2, 9178-9184.	10.3	93
57	Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery. Nanoscale, 2018, 10, 11384-11391.	5.6	93
58	Rational design of metallophosphors with tunable aggregation-induced phosphorescent emission and their promising applications in time-resolved luminescence assay and targeted luminescence imaging of cancer cells. Journal of Materials Chemistry, 2012, 22, 22167.	6.7	91
59	ZnO nanoparticles as an antimicrobial tissue adhesive for skin wound closure. Journal of Materials Chemistry B, 2017, 5, 4535-4541.	5.8	90
60	RGD-QD-MoS ₂ nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. Nanoscale, 2017, 9, 15835-15845.	5.6	90
61	Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nature Communications, 2022, 13, .	12.8	87
62	DNA origami cryptography for secure communication. Nature Communications, 2019, 10, 5469.	12.8	84
63	A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosensors and Bioelectronics, 2021, 187, 113329.	10.1	83
64	Preparation and Characterization of Polyfluorene-Based Supramolecular π-Conjugated Polymer Gels. Journal of Physical Chemistry C, 2011, 115, 4418-4424.	3.1	82
65	Nanogel-Incorporated Injectable Hydrogel for Synergistic Therapy Based on Sequential Local Delivery of Combretastatin-A4 Phosphate (CA4P) and Doxorubicin (DOX). ACS Applied Materials & Discrete Interfaces, 2018, 10, 18560-18573.	8.0	82
66	Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows. Journal of Materials Chemistry B, 2019, 7, 2001-2008.	5.8	82
67	A Surfaceâ€Confined Protonâ€Driven DNA Pump Using a Dynamic 3D DNA Scaffold. Advanced Materials, 2016, 28, 6860-6865.	21.0	79
68	Host–Guest Interactions Initiated Supramolecular Chitosan Nanogels for Selective Intracellular Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28665-28670.	8.0	79
69	Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 20605-20611.	10.3	76
70	Transfer of Twoâ€Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNAâ€Origamiâ€Based Nanoimprinting Lithography. Angewandte Chemie - International Edition, 2016, 55, 8036-8040.	13.8	74
71	Facile Synthesis of Yolk-Shell-Structured Triple-Hybridized Periodic Mesoporous Organosilica Nanoparticles for Biomedicine. Small, 2016, 12, 3550-3558.	10.0	73
72	DNA origami-based shape IDs for single-molecule nanomechanical genotyping. Nature Communications, 2017, 8, 14738.	12.8	73

#	Article	IF	CITATIONS
73	Recent development of nanomedicine for the treatment of bacterial biofilm infections. View, 2021, 2, 20200065.	5.3	73
74	Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice. Biomaterials, 2016, 96, 24-32.	11.4	70
75	DNA-based plasmonic nanostructures. Materials Today, 2015, 18, 326-335.	14.2	68
76	Colorimetric/SERS dual-mode detection of mercury ion via SERS-Active peroxidase-like Au@AgPt NPs. Sensors and Actuators B: Chemical, 2020, 310, 127849.	7.8	68
77	A MoS ₂ –based system for efficient immobilization of hemoglobin and biosensing applications. Nanotechnology, 2015, 26, 274005.	2.6	66
78	Dually Ordered Porous TiO ₂ â€rGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion. Advanced Materials, 2017, 29, 1604795.	21.0	66
79	Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 5920-5926.	10.0	65
80	Biofilm Microenvironment-Responsive Nanotheranostics for Dual-Mode Imaging and Hypoxia-Relief-Enhanced Photodynamic Therapy of Bacterial Infections. Research, 2020, 2020, 9426453.	5.7	65
81	Encoding DNA Frameworks for Amplified Multiplexed Imaging of Intracellular microRNAs. Analytical Chemistry, 2021, 93, 2226-2234.	6.5	64
82	Intracellular MicroRNA Imaging with MoS ₂ -Supported Nonenzymatic Catassembly of DNA Hairpins. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20725-20733.	8.0	63
83	Cationic Conjugated Polymer/Hyaluronan-Doxorubicin Complex for Sensitive Fluorescence Detection of Hyaluronidase and Tumor-Targeting Drug Delivery and Imaging. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21529-21537.	8.0	62
84	Polymeric Nanomedicine with "Lego―Surface Allowing Modular Functionalization and Drug Encapsulation. ACS Applied Materials & Drug Encapsulation. ACS Applied Materials & Drug Encapsulation. ACS Applied Materials & Drug Encapsulation.	8.0	62
85	DNA Origamiâ€Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2021, 60, 11695-11701.	13.8	62
86	Restriction of Photoinduced Twisted Intramolecular Charge Transfer. ChemPhysChem, 2011, 12, 397-404.	2.1	60
87	MnO ₂ /Graphene Nanocomposites for Nonenzymatic Electrochemical Detection of Hydrogen Peroxide. Electroanalysis, 2015, 27, 353-359.	2.9	58
88	Templating C ₆₀ on MoS ₂ Nanosheets for 2D Hybrid van der Waals <i>p</i> â€" <i>n</i> Nanoheterojunctions. Chemistry of Materials, 2016, 28, 4300-4306.	6.7	58
89	An eco-friendly in situ activatable antibiotic via cucurbit[8]uril-mediated supramolecular crosslinking of branched polyethylenimine. Chemical Communications, 2017, 53, 5870-5873.	4.1	58
90	A lipase-responsive antifungal nanoplatform for synergistic photodynamic/photothermal/pharmaco-therapy of azole-resistant <i>Candida albicans</i> infections. Chemical Communications, 2019, 55, 15145-15148.	4.1	57

#	Article	IF	Citations
91	Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. National Science Review, 2020, 7, 1638-1646.	9.5	57
92	Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures. Analytical Chemistry, 2016, 88, 8043-8049.	6.5	54
93	Individual Au-Nanocube Based Plasmonic Nanoprobe for Cancer Relevant MicroRNA Biomarker Detection. ACS Sensors, 2017, 2, 1435-1440.	7.8	52
94	A systematic evaluation of the biocompatibility of cucurbit [7] uril in mice. Scientific Reports, 2018, 8, 8819.	3.3	52
95	Synthesis of an AlEgen functionalized cucurbit[7]uril for subcellular bioimaging and synergistic photodynamic therapy and supramolecular chemotherapy. Chemical Science, 2021, 12, 7727-7734.	7.4	52
96	A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. Materials Horizons, 2021, 8, 1264-1271.	12.2	51
97	The synthesis of shape-controlled \hat{l} ±-MoO ₃ /graphene nanocomposites for high performance supercapacitors. New Journal of Chemistry, 2015, 39, 8780-8786.	2.8	50
98	Cationic Conjugated Polymer/Fluoresceinamine-Hyaluronan Complex for Sensitive Fluorescence Detection of CD44 and Tumor-Targeted Cell Imaging. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19144-19153.	8.0	49
99	Self-propelled manganese oxide-based catalytic micromotors for drug delivery. RSC Advances, 2016, 6, 65624-65630.	3.6	49
100	Synthesis of large-scale undoped and nitrogen-doped amorphous graphene on MgO substrate by chemical vapor deposition. Journal of Materials Chemistry, 2012, 22, 19679.	6.7	48
101	Graphene Oxide-Assisted Nucleic Acids Assays Using Conjugated Polyelectrolytes-Based Fluorescent Signal Transduction. Analytical Chemistry, 2015, 87, 3877-3883.	6.5	48
102	Au nanoparticles on two-dimensional MoS ₂ nanosheets as a photoanode for efficient photoelectrochemical miRNA detection. Analyst, The, 2018, 143, 1705-1712.	3.5	48
103	Tunable Nonvolatile Memory Behaviors of PCBM–MoS ₂ 2D Nanocomposites through Surface Deposition Ratio Control. ACS Applied Materials & Deposition Ratio Control Ratio C	8.0	48
104	Plasmonic Nanobiosensor Based on Hairpin DNA for Detection of Trace Oligonucleotides Biomarker in Cancers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2459-2466.	8.0	47
105	Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition. Science China Materials, 2018, 61, 243-253.	6.3	47
106	NiO nanowall-assisted growth of thick carbon nanofiber layers on metal wires for fiber supercapacitors. Chemical Communications, 2016, 52, 2721-2724.	4.1	46
107	Electrochemical Sensors Using Twoâ€Dimensional Layered Nanomaterials. Electroanalysis, 2015, 27, 1062-1072.	2.9	45
108	Combination assay of lung cancer associated serum markers using surface-enhanced Raman spectroscopy. Journal of Materials Chemistry B, 2016, 4, 1811-1817.	5.8	45

#	Article	IF	CITATIONS
109	Direct Observation of Semiconductor–Metal Phase Transition in Bilayer Tungsten Diselenide Induced by Potassium Surface Functionalization. ACS Nano, 2018, 12, 2070-2077.	14.6	44
110	Efficient biofunctionalization of MoS2 nanosheets with peptides as intracellular fluorescent biosensor for sensitive detection of caspase-3 activity. Journal of Colloid and Interface Science, 2019, 543, 96-105.	9.4	44
111	Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120337.	3.4	43
112	Improving performance of MoS ₂ -based electrochemical sensors by decorating noble metallic nanoparticles on the surface of MoS ₂ nanosheet. RSC Advances, 2016, 6, 76614-76620.	3.6	43
113	Ultrasensitive analysis of carcinoembryonic antigen based on MoS2-based electrochemical immunosensor with triple signal amplification. Biosensors and Bioelectronics, 2019, 140, 111353.	10.1	43
114	Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. European Journal of Medicinal Chemistry, 2017, 136, 596-602.	5 . 5	42
115	SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network. Biosensors and Bioelectronics, 2021, 190, 113376.	10.1	42
116	Far-red/near-infrared fluorescent conjugated polymer nanoparticles with size-dependent chirality and cell imaging applications. Polymer Chemistry, 2015, 6, 3962-3969.	3.9	41
117	MoS ₂ –Au@Pt nanohybrids as a sensing platform for electrochemical nonenzymatic glucose detection. New Journal of Chemistry, 2018, 42, 6750-6755.	2.8	40
118	Macrocycle-wrapped polyethylenimine for gene delivery with reduced cytotoxicity. Biomaterials Science, 2018, 6, 1031-1039.	5.4	40
119	Polyhedral Oligomeric Silsesquioxane (POSS)-Based Cationic Conjugated Oligoelectrolyte/Porphyrin for Efficient Energy Transfer and Multiamplified Antimicrobial Activity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34455-34463.	8.0	40
120	Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy. Physical Chemistry Chemical Physics, 2018, 20, 17262-17267.	2.8	40
121	High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31242-31254.	8.0	40
122	Molybdenum disulfide (MoS2) nanosheets-based hydrogels with light-triggered self-healing property for flexible sensors. Journal of Colloid and Interface Science, 2021, 586, 601-612.	9.4	40
123	SERS-based mercury ion detections: principles, strategies and recent advances. Science China Chemistry, 2016, 59, 16-29.	8.2	39
124	Neural network enabled metasurface design for phase manipulation. Optics Express, 2021, 29, 2521.	3.4	39
125	Hydrogenâ€Bonded Supramolecular Conjugated Polymer Nanoparticles for White Lightâ€Emitting Devices. Macromolecular Rapid Communications, 2014, 35, 895-900.	3.9	37
126	An Individual Nanocube-Based Plasmonic Biosensor for Real-Time Monitoring the Structural Switch of the Telomeric G-Quadruplex. Small, 2016, 12, 2913-2920.	10.0	37

#	Article	IF	CITATIONS
127	Synthesis of Novel Gold Mesoflowers as SERS Tags for Immunoassay with Improved Sensitivity. ACS Applied Materials & Sensit	8.0	36
128	pH/NIR-responsive semiconducting polymer nanoparticles for highly effective photoacoustic image guided chemo-photothermal synergistic therapy. Journal of Controlled Release, 2019, 293, 94-103.	9.9	36
129	Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs. Chemical Communications, 2015, 51, 294-297.	4.1	35
130	DNAâ€Origamiâ€Based Assembly of Anisotropic Plasmonic Gold Nanostructures. Small, 2017, 13, 1603991.	10.0	35
131	Synthesis of magnetic core-branched Au shell nanostructures and their application in cancer-related miRNA detection via SERS. Science China Materials, 2017, 60, 1129-1144.	6.3	35
132	Antibody-Functionalized MoS2 Nanosheets for Targeted Photothermal Therapy of Staphylococcus aureus Focal Infection. Frontiers in Bioengineering and Biotechnology, 2019, 7, 218.	4.1	35
133	Colorimetric Analysis of Carcinoembryonic Antigen Using Highly Catalytic Gold Nanoparticles-Decorated MoS ₂ Nanocomposites. ACS Applied Bio Materials, 2019, 2, 292-298.	4.6	35
134	Conjugated polymer nanoparticles with aggregation induced emission characteristics for intracellular <scp>F</scp> e ³⁺ sensing. Journal of Polymer Science Part A, 2016, 54, 1686-1693.	2.3	34
135	Ultrasensitive SERS detection of nucleic acids via simultaneous amplification of target-triggered enzyme-free recycling and multiple-reporter. Biosensors and Bioelectronics, 2019, 141, 111402.	10.1	34
136	High peroxidase-mimicking activity of gold@platinum bimetallic nanoparticle-supported molybdenum disulfide nanohybrids for the selective colorimetric analysis of cysteine. Chemical Communications, 2020, 56, 12351-12354.	4.1	34
137	DNA-based nanoscale walking devices and their applications. RSC Advances, 2017, 7, 47425-47434.	3.6	33
138	Label-Free Analysis of H5N1 Virus Based on Three-Segment Branched DNA-Templated Fluorescent Silver Nanoclusters. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48357-48362.	8.0	33
139	Au nanoparticles deposited on ultrathin two-dimensional covalent organic framework nanosheets for <i>in vitro</i>	5.6	33
140	Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics, 2022, 11, 2507-2529.	6.0	33
141	Plasmonic Heterodimers with Binding Siteâ€Dependent Hot Spot for Surfaceâ€Enhanced Raman Scattering. Small, 2018, 14, e1800669.	10.0	32
142	Single-Step Organization of Plasmonic Gold Metamaterials with Self-Assembled DNA Nanostructures. Research, 2019, 2019, 7403580.	5.7	32
143	Cationic, water-soluble, fluorene-containing poly(arylene ethynylene)s: Effects of water solubility on aggregation, photoluminescence efficiency, and amplified fluorescence quenching in aqueous solutions. Journal of Polymer Science Part A, 2006, 44, 5778-5794.	2.3	31
144	Ultrasensitive detection of carcino-embryonic antigen by using novel flower-like gold nanoparticle SERS tags and SERS-active magnetic nanoparticles. RSC Advances, 2014, 4, 41666-41669.	3.6	31

#	Article	IF	Citations
145	Fluorescent-magnetic poly(poly(ethyleneglycol)monomethacrylate)-grafted Fe3O4 nanoparticles from post-atom-transfer-radical-polymerization modification: synthesis, characterization, cellular uptake and imaging. Journal of Materials Chemistry, 2012, 22, 6965.	6.7	30
146	Chemically Functionalized Conjugated Oligoelectrolyte Nanoparticles for Enhancement of Current Generation in Microbial Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14501-14505.	8.0	30
147	A gold nanoflower-based traceable drug delivery system for intracellular SERS imaging-guided targeted chemo-phototherapy. Journal of Materials Chemistry B, 2018, 6, 3030-3039.	5.8	30
148	Hyaluronic Acid Nanoparticles Based on a Conjugated Oligomer Photosensitizer: Target-Specific Two-Photon Imaging, Redox-Sensitive Drug Delivery, and Synergistic Chemo-Photodynamic Therapy. ACS Applied Bio Materials, 2019, 2, 2421-2434.	4.6	30
149	Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant <i>Staphylococcus aureus</i> infections. Biomaterials Science, 2021, 9, 4484-4495.	5.4	30
150	A study on tunable AIE (AIEE) of boron ketoiminate-based conjugated polymers for live cell imaging. Polymer Chemistry, 2015, 6, 5070-5076.	3.9	29
151	Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays. Biosensors and Bioelectronics, 2016, 81, 92-96.	10.1	29
152	Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles. Biosensors and Bioelectronics, 2015, 65, 171-175.	10.1	28
153	"Click―functionalization of dual stimuli-responsive polymer nanocapsules for drug delivery systems. Polymer Chemistry, 2017, 8, 3056-3065.	3.9	28
154	Cisplatin and doxorubicin high-loaded nanodrug based on biocompatible thioether- and ethane-bridged hollow mesoporous organosilica nanoparticles. Journal of Colloid and Interface Science, 2018, 513, 214-221.	9.4	28
155	Rapid aptasensor capable of simply detect tumor markers based on conjugated polyelectrolytes. Talanta, 2018, 190, 204-209.	5. 5	28
156	One-pot growth of triangular SnS nanopyramids for photoacoustic imaging and photothermal ablation of tumors. New Journal of Chemistry, 2019, 43, 13256-13262.	2.8	28
157	DNAâ€Functionalized Plasmonic Nanomaterials for Optical Biosensing. Biotechnology Journal, 2020, 15, e1800741.	3.5	28
158	DNA Origami Radiometers for Measuring Ultraviolet Exposure. Journal of the American Chemical Society, 2020, 142, 8782-8789.	13.7	28
159	Gold-modified silver nanorod arrays for SERS-based immunoassays with improved sensitivity. Journal of Materials Chemistry B, 2014, 2, 7488-7494.	5.8	27
160	Interface induce growth of intermediate layer for bandgap engineering insights into photoelectrochemical water splitting. Scientific Reports, 2016, 6, 27241.	3.3	27
161	Hetero-assembly of gold nanoparticles on a DNA origami template. Science China Chemistry, 2016, 59, 730-734.	8.2	27
162	Platinum nanoparticles supported MoS2 nanosheet for simultaneous detection of dopamine and uric acid. Science China Chemistry, 2016, 59, 332-337.	8.2	27

#	Article	IF	CITATION
163	Mesoporous organosilica nanoparticles with large radial pores via an assembly-reconstruction process in bi-phase. Journal of Materials Chemistry B, 2017, 5, 2625-2634.	5.8	27
164	Size effect of mesoporous organosilica nanoparticles on tumor penetration and accumulation. Biomaterials Science, 2019, 7, 4790-4799.	5.4	27
165	Cancer-Specific MicroRNA Analysis with a Nonenzymatic Nucleic Acid Circuit. ACS Applied Materials & Amp; Interfaces, 2019, 11, 11220-11226.	8.0	27
166	Gold Nanomaterials for Imaging-Guided Near-Infrared in vivo Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2019, 7, 398.	4.1	27
167	Supramolecular nanomedicine derived from cucurbit[7]uril-conjugated nano-graphene oxide for multi-modality cancer therapy. Biomaterials Science, 2021, 9, 3804-3813.	5.4	27
168	Ultrathin Twoâ€Dimensional Plasmonic PtAg Nanosheets for Broadband Phototheranostics in Both NIRâ€I and NIRâ€I Biowindows. Advanced Science, 2021, 8, e2100386.	11.2	27
169	Nanoscale Organic–Inorganic Hybrid Photosensitizers for Highly Effective Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 248-255.	8.0	26
170	Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. Nature Communications, 2019, 10, 1006.	12.8	26
171	Mitochondria-Targeting MoS ₂ -Based Nanoagents for Enhanced NIR-II Photothermal-Chemodynamic Synergistic Oncotherapy. ACS Applied Materials & Diterfaces, 2021, 13, 55928-55938.	8.0	26
172	A New Polymer-Based Fluorescent Chemosensor Incorporating Propane-1,3-Dione and 2,5-Diethynylbenzene Moieties for Detection of Copper(II) and Iron(III). Polymers, 2017, 9, 267.	4.5	25
173	Programming DNA origami assembly for shape-resolved nanomechanical imaging labels. Nature Protocols, 2018, 13, 1569-1585.	12.0	25
174	A molybdenum disulfide@Methylene Blue nanohybrid for electrochemical determination of microRNA-21, dopamine and uric acid. Mikrochimica Acta, 2019, 186, 607.	5.0	25
175	The self-assembly of a hybrid photosensitizer for the synergistically enhanced photodynamic/photothermal therapy. Biomaterials Science, 2021, 9, 2115-2123.	5.4	25
176	Conjugated Polymer Nanoparticles for Labelâ€Free and Bioconjugateâ€Recognized DNA Sensing in Serum. Advanced Science, 2015, 2, 1400009.	11.2	24
177	An Au@Ag nanocube based plasmonic nano-sensor for rapid detection of sulfide ions with high sensitivity. RSC Advances, 2018, 8, 5792-5796.	3.6	24
178	Noble metal nanostructure-decorated molybdenum disulfide nanocomposites: synthesis and applications. Journal of Materials Chemistry B, 2018, 6, 5323-5334.	5.8	24
179	Concealing the taste of the Guinness World's most bitter substance by using a synthetic nanocontainer. Nanoscale, 2017, 9, 10606-10609.	5.6	23
180	Multiple Amplified Electrochemical Detection of MicroRNAâ€21 Using Hierarchical Flowerâ€like Gold Nanostructures Combined with Goldâ€enriched Hybridization Chain Reaction. Electroanalysis, 2018, 30, 1349-1356	2.9	23

#	Article	IF	Citations
181	Facile synthesis of yolk–shell structured monodisperse mesoporous organosilica nanoparticles by a mild alkalescent etching approach. Journal of Colloid and Interface Science, 2018, 527, 33-39.	9.4	23
182	Order-enhanced silver nanowire networks fabricated by two-step dip-coating as polymer solar cell electrodes. RSC Advances, 2015, 5, 100725-100729.	3.6	22
183	Targeting and deep-penetrating delivery strategy for stented coronary artery by magnetic guidance and ultrasound stimulation. Ultrasonics Sonochemistry, 2020, 67, 105188.	8.2	22
184	Graphene-based Highly Efficient Micromotors. Chemistry Letters, 2015, 44, 399-401.	1.3	21
185	Two-photon semiconducting polymer nanoparticles as a new platform for imaging of intracellular pH variation. Biosensors and Bioelectronics, 2019, 126, 129-135.	10.1	21
186	Highly sensitive SERS assay of DENV gene via a cascade signal amplification strategy of localized catalytic hairpin assembly and hybridization chain reaction. Sensors and Actuators B: Chemical, 2020, 325, 128970.	7.8	21
187	Encapsulation of AGEâ€Breaker Alagebrium by Cucurbit[7]uril Improved the Stability of Both Its Carbonyl αâ€Hydrogen and Thiazolium C2â€Hydrogen. Chemistry - an Asian Journal, 2016, 11, 3126-3133.	3.3	20
188	Mussel-inspired functionalization of semiconducting polymer nanoparticles for amplified photoacoustic imaging and photothermal therapy. Nanoscale, 2019, 11, 14727-14733.	5.6	20
189	Electrochemical Analysis of Target-Induced Hairpin-Mediated Aptamer Sensors. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 48133-48139.	8.0	20
190	Multifunctional shape-dependent plasmonic nanoprobe by enzymatic etching of single gold triangular nanoplate. Nano Research, 2020, 13, 3364-3370.	10.4	20
191	Virus-mimicking mesoporous organosilica nanocapsules with soft framework and rough surface for enhanced cellular uptake and tumor penetration. Biomaterials Science, 2020, 8, 2227-2233.	5.4	19
192	Hyaluronic acid-based nanogels derived from multicomponent self-assembly for imaging-guided chemo-photodynamic cancer therapy. Carbohydrate Polymers, 2021, 268, 118257.	10.2	19
193	Plasmonic-enhanced polymer photovoltaic cells based on Au nanoparticles with wide absorption spectra of 300–1000 nm. Journal of Materials Chemistry C, 2014, 2, 9303-9310.	5.5	18
194	Alleviation of Polycation-Induced Blood Coagulation by the Formation of Polypseudorotaxanes with Macrocyclic Cucurbit[7]uril. ACS Applied Bio Materials, 2018, 1, 544-548.	4.6	18
195	Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1797-1807.	3.3	18
196	Revealing Lectin–Sugar Interactions with a Single Au@Ag Nanocube. ACS Applied Materials & Single Au@Ag Nanocube. ACS	8.0	18
197	Silver-mediated temperature-controlled selective deposition of Pt on hexoctahedral Au nanoparticles and the high performance of Au@AgPt NPs in catalysis and SERS. Nanoscale, 2019, 11, 18881-18893.	5.6	18
198	Hydrophobic collapse-driven nanoparticle coating with poly-adenine adhesives. Chemical Communications, 2021, 57, 3801-3804.	4.1	18

#	Article	IF	Citations
199	Non-enzymatic signal amplification-powered point-of-care SERS sensor for rapid and ultra-sensitive assay of SARS-CoV-2 RNA. Biosensors and Bioelectronics, 2022, 212, 114379.	10.1	18
200	Facile Preparation of Multicolor Polymer Nanoparticle Bioconjugates with Specific Biorecognition. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11129-11135.	8.0	17
201	Sensitive DNA detection using cascade amplification strategy based on conjugated polyelectrolytes and hybridization chain reaction. RSC Advances, 2017, 7, 3528-3533.	3.6	16
202	Hydrothermal synthesis of novel rhombic dodecahedral SnS nanocrystals for highly efficient photothermal therapy. Chemical Communications, 2019, 55, 2789-2792.	4.1	16
203	Highly stable semiconducting polymer nanoparticles for multi-responsive chemo/photothermal combined cancer therapy. Theranostics, 2020, 10, 5966-5978.	10.0	16
204	Multi-armed tetrahedral DNA probes for visualizing the whole-course of cell apoptosis by simultaneously fluorescence imaging intracellular cytochrome c and telomerase. Biosensors and Bioelectronics, 2022, 205, 114059.	10.1	16
205	Dimeric SFX host materials for red, green and blue phosphorescent organic light-emitting devices. Synthetic Metals, 2014, 195, 321-327.	3.9	15
206	Effect of gold nanorods and nanocubes on electroluminescent performances in organic light-emitting diodes and its working mechanism. AIP Advances, 2015, 5, .	1.3	15
207	An Improved Turnâ€On Aptasensor for Thrombin Detection Using Split Aptamer Fragments and Graphene Oxide. Chinese Journal of Chemistry, 2015, 33, 981-986.	4.9	15
208	Easily fixed simple small ESIPT molecule with aggregation induced emission for fast and photostable "turn-on―bioimaging. RSC Advances, 2015, 5, 7789-7793.	3.6	15
209	Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Materials & Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Materials & Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Materials & Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Materials & Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Materials & Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Materials & Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Materials & Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Materials & Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Materials & Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Materials & Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS Applied Plasmonic Nanostructures for Raman Enhancement. ACS Applied Nanostructures for Raman E	8.0	15
210	Self-assembled nanoparticles based on a cationic conjugated polymer/hyaluronan–cisplatin complex as a multifunctional platform for simultaneous tumor-targeting cell imaging and drug delivery. New Journal of Chemistry, 2017, 41, 4998-5006.	2.8	15
211	Constraining the Teratogenicity of Pesticide Pollution by a Synthetic Nanoreceptor. Chemistry - an Asian Journal, 2018, 13, 41-45.	3.3	15
212	Exfoliated FePS3 nanosheets for T1-weighted magnetic resonance imaging-guided near-infrared photothermal therapy in vivo. Science China Materials, 2021, 64, 2613-2623.	6.3	15
213	Deep neural network for designing near- and far-field properties in plasmonic antennas. Optical Materials Express, 2021, 11, 1907.	3.0	15
214	Synthesis of polyaniline/Au composite nanotubes and their high performance in the detection of NADH. Journal of Solid State Electrochemistry, 2014, 18, 1717-1723.	2.5	14
215	Transfer of Twoâ€Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNAâ€Origamiâ€Based Nanoimprinting Lithography. Angewandte Chemie, 2016, 128, 8168-8172.	2.0	14
216	Fabrication of a silver octahedral nanoparticle-containing polycaprolactone nanocomposite for antibacterial bone scaffolds. RSC Advances, 2017, 7, 10051-10056.	3.6	14

#	Article	IF	CITATIONS
217	Ultrasensitive analysis of microRNAs with gold nanoparticle-decorated molybdenum disulfide nanohybrid-based multilayer nanoprobes. Chemical Communications, 2020, 56, 9012-9015.	4.1	14
218	General and facile syntheses of hybridized deformable hollow mesoporous organosilica nanocapsules for drug delivery. Journal of Colloid and Interface Science, 2021, 583, 714-721.	9.4	14
219	Supramolecular Luminol–AlEgen Nanoparticles for Deep-Tissue-Inflammation Imaging. ACS Applied Nano Materials, 2022, 5, 5993-6000.	5.0	14
220	Shape uniformity control of metal–organic framework nanodisks via surfactant and substrate synergetic scissoring effects and their fluorescence sensing properties. CrystEngComm, 2016, 18, 4830-4835.	2.6	13
221	Exploring side-chain length effect on \hat{l}^2 -phase of polyfluorene derivatives in electrospinning and their optical behavior. Polymer, 2018, 153, 338-343.	3.8	13
222	A dual signal amplification strategy for the highly sensitive fluorescence detection of nucleic acids. Analyst, The, 2020, 145, 1219-1226.	3.5	13
223	Gut microbiota and lipid metabolism alterations in mice induced by oral cadmium telluride quantum dots. Journal of Applied Toxicology, 2020, 40, 1131-1140.	2.8	13
224	Intricately structured mesoporous organosilica nanoparticles: synthesis strategies and biomedical applications. Biomaterials Science, 2021, 9, 1609-1626.	5.4	13
225	DNA self-assembled Au nanoparticle clusters on silver nanorod arrays for high-sensitive and multiplex detection of cancer-related biomarkers. Nanoscale, 2022, 14, 4538-4547.	5.6	13
226	Intracellular miRNA-Triggered Surface-Enhanced Raman Scattering Imaging and Dual Gene-Silencing Therapy of Cancer Cell. Analytical Chemistry, 2022, 94, 9336-9344.	6.5	13
227	AIE-active conjugated polymer nanoparticles with red-emission for in vitro and in vivo imaging. RSC Advances, 2016, 6, 114580-114586.	3.6	12
228	Eco-friendly porous iron(<scp>iii</scp>) oxide micromotors for efficient wastewater cleaning. New Journal of Chemistry, 2019, 43, 12594-12600.	2.8	12
229	Layer-by-Layer Assembly of Lipid Nanobubbles on Microneedles for Ultrasound-Assisted Transdermal Drug Delivery. ACS Applied Bio Materials, 2022, 5, 562-569.	4.6	12
230	Highly sensitive detection of nucleic acids using a cascade amplification strategy based on exonuclease III-assisted target recycling and conjugated polyelectrolytes. Analyst, The, 2018, 143, 4267-4272.	3.5	11
231	Ultrasensitive SERS determination of avian influenza A H7N9 virus via exonuclease III-assisted cycling amplification. Talanta, 2019, 205, 120137.	5.5	11
232	Cubic POSS engineering of photosensitizer-doped semiconducting polymer nanoparticles for enhanced fluorescence imaging and amplified photodynamic therapy. Polymer Chemistry, 2020, 11, 7035-7041.	3.9	11
233	A photothermally-induced HClO-releasing nanoplatform for imaging-guided tumor ablation and bacterial prevention. Biomaterials Science, 2020, 8, 7145-7153.	5.4	11
234	A Smart "Sense-and-Treat―Nanoplatform Based on Semiconducting Polymer Nanoparticles for Precise Photothermal-Photodynamic Combined Therapy. Biomacromolecules, 2021, 22, 1137-1146.	5.4	11

#	Article	IF	CITATIONS
235	A hybrid polyvinyl alcohol/molybdenum disulfide nanosheet hydrogel with light-triggered rapid self-healing capability. Journal of Materials Chemistry B, 2021, 9, 2266-2274.	5.8	11
236	SERS molecular-ruler based DNA aptamer single-molecule and its application to multi-level optical storage. Chemical Engineering Journal, 2022, 433, 133666.	12.7	11
237	Isolation of the Autoinducer-Quenching Strain that Inhibits LasR in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 2014, 15, 6328-6342.	4.1	10
238	Versatile functionalization of surface-tailorable polymer nanohydrogels for drug delivery systems. Biomaterials Science, 2019, 7, 247-261.	5.4	10
239	Synthesis of Sulfurâ€Hybridized Pyracylene and the Unexpected Phenyl Shift Mediated Rearrangement of Scholl Reaction. European Journal of Organic Chemistry, 2019, 2019, 3061-3070.	2.4	10
240	Comparison of Different Neural Network Architectures for Plasmonic Inverse Design. ACS Omega, 2021, 6, 23076-23082.	3.5	10
241	General Thermodynamic-Controlled Coating Method to Prepare Janus Mesoporous Nanomotors for Improving Tumor Penetration. ACS Applied Materials & Interfaces, 2021, 13, 51297-51311.	8.0	10
242	Molybdenum Disulfide-Based Nanoprobes: Preparation and Sensing Application. Biosensors, 2022, 12, 87.	4.7	10
243	Goldâ€Nanoparticleâ€Mediated Assembly of Highâ€Order DNA Nanoâ€Architectures. Small, 2022, 18, e2200824.	. 10.0	10
244	Double-Tetrahedral DNA Probe Functionalized Ag Nanorod Biointerface for Effective Capture, Highly Sensitive Detection, and Nondestructive Release of Circulating Tumor Cells. ACS Applied Materials & Los Applied	8.0	10
245	Fluorescence Turn-On Sensing of Ascorbic Acid Based on a Hyperbranched Conjugated Polyelectrolyte. Soft Materials, 2014, 12, 73-78.	1.7	9
246	Superhydrophobic graphene-decorated mesh gauze: recycling oils and organic solvents enhanced by large-diameter capillary action. Science China Materials, 2016, 59, 581-588.	6.3	9
247	Fluorinated p-n type copolyfluorene as polymer electret for stable nonvolatile organic transistor memory device. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1183-1195.	3.8	9
248	One-pot synthesis of a photostable green fluorescent probe for biological imaging. Journal of Materials Science, 2016, 51, 2972-2979.	3.7	9
249	Candida albicans Ubiquitin and Heat Shock Factor-Type Transcriptional Factors Are Involved in 2-Dodecenoic Acid-Mediated Inhibition of Hyphal Growth. Microorganisms, 2020, 8, 75.	3.6	9
250	Modular DNA Circuits for Point-of-Care Colorimetric Assay of Infectious Pathogens. Analytical Chemistry, 2021, 93, 13861-13869.	6.5	9
251	Direct synthesis of Au–Ag nanoframes by galvanic replacement <i>via</i> a continuous concaving process. Nanoscale, 2022, 14, 8825-8832.	5.6	9
252	Unprecedented side reactions in Stille coupling: desired ones for Stille polycondensation. Chemical Communications, 2015, 51, 15846-15849.	4.1	8

#	Article	IF	CITATIONS
253	DNA origami-templated assembly of plasmonic nanostructures with enhanced Raman scattering. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	3.4	8
254	Highly Stable Core–Shell Structured Semiconducting Polymer Nanoparticles for FRETâ€Based Intracellular pH Imaging. Advanced Healthcare Materials, 2019, 8, 1900255.	7.6	8
255	A photoelectrochemical sensor based on a reliable basic photoactive matrix possessing good analytical performance for miRNA-21 detection. Analyst, The, 2020, 145, 7388-7396.	3.5	8
256	Construction of a Molybdenum Disulfide-Based Colorimetric Sensor for Label-Free Infectious Disease Analysis Coupled with a Catalyzed Hairpin Assembly Reaction. Langmuir, 2022, 38, 1791-1796.	3.5	8
257	Tetrahedral DNA-directed core-satellite assembly as SERS sensor for mercury ions at the single-particle level. Analyst, The, 2022, 147, 1866-1872.	3.5	8
258	Non-invasive monitoring of the osteogenic differentiation of human mesenchymal stem cells on a polycaprolactone scaffold using Raman imaging. RSC Advances, 2016, 6, 61771-61776.	3.6	7
259	Biphasic-to-monophasic successive Co-assembly approach to yolk–shell structured mesoporous organosilica nanoparticles. Journal of Colloid and Interface Science, 2017, 507, 242-249.	9.4	7
260	A Novel "Off-On―Fluorescent Probe Based on Carbon Nitride Nanoribbons for the Detection of Citrate Anion and Live Cell Imaging. Sensors, 2018, 18, 1163.	3.8	7
261	Soft mesoporous organosilica nanorods with gold plasmonic core for significantly enhanced cellular uptake. Journal of Colloid and Interface Science, 2019, 550, 81-89.	9.4	7
262	A nanoparticle-containing polycaprolactone implant for combating post-resection breast cancer recurrence. Nanoscale, 2021, 13, 14417-14425.	5.6	7
263	A label-free electrochemical sensor for ultrasensitive microRNA-21 analysis based on the poly(<scp>l</scp> -cysteine)/MoS ₂ sensing interface. Analyst, The, 2021, 146, 1663-1667.	3.5	7
264	1,4-Benzenedithiol-Bridged Nanogap-Based Individual Particle Surface-Enhanced Raman Spectroscopy Mechanical Probe for Revealing the Endocytic Force. ACS Nano, 2022, 16, 6605-6614.	14.6	7
265	Synthesis, Structural Characterization and Reactivity of a Bis(phosphine)(silyl) Platinum(II) Complex. Chinese Journal of Chemistry, 2015, 33, 1206-1210.	4.9	6
266	Tuning the backbones and side chains of cationic meta-linked poly(phenylene ethynylene)s: Different conformational modes, tunable light emission, and helical wrapping of multi-walled carbon nanotubes. Polymer, 2016, 102, 143-152.	3.8	6
267	Highly Emissive Hierarchical Uniform Dialkylfluorene-Based Dimer Microcrystals for Ultraviolet Organic Laser. Journal of Physical Chemistry C, 2019, 123, 28881-28886.	3.1	6
268	Deep Neural Networks: A Bidirectional Deep Neural Network for Accurate Silicon Color Design (Adv.) Tj ETQq0 0 (O rgBT /Ov	rerlock 10 Tf
269	Two-stage thiol-based click reactions for the preparation and adhesion of hydrogels. Polymer Chemistry, 2020, 11, 2986-2994.	3.9	6
270	Synthesis of water-soluble europium-containing nanoprobes via polymerization-induced self-assembly and their cellular imaging applications. Talanta, 2021, 232, 122182.	5.5	6

#	Article	IF	Citations
271	CRISPR-empowered hybridization chain reaction amplification for an attomolar electrochemical sensor. Chemical Communications, 2022, 58, 8826-8829.	4.1	6
272	A Goldâ€Nanoparticleâ€Based SERS Reporter that Rolls on DNA Origami Templates. ChemNanoMat, 2017, 3, 760-763.	2.8	5
273	Perfluorooctane sulfonate enhances mRNA expression of PPARγ and ap2 in human mesenchymal stem cells monitored by long-retained intracellular nanosensor. Environmental Pollution, 2020, 263, 114571.	7.5	5
274	Electrospun Supramolecular Hybrid Microfibers from Conjugated Polymers: Color Transformation and Conductivity Evolution. Chinese Journal of Polymer Science (English Edition), 2021, 39, 824-830.	3.8	5
275	Europium(<scp>iii</scp>)-containing nanohydrogels for cellular imaging and drug delivery applications. Polymer Chemistry, 2021, 12, 4159-4166.	3.9	5
276	Photoswitchable probe with distinctive characteristics for selective fluorescence imaging and long-term tracing. RSC Advances, 2019, 9, 4812-4815.	3.6	4
277	Fluorescence and ratiometric photoacoustic imaging of endogenous furin activity <i>via</i> peptide functionalized MoS ₂ nanosheets. Biomaterials Science, 2021, 9, 8313-8322.	5.4	4
278	NIR-responsive MoS ₂ –Cu ₂ WS ₄ nanosheets for catalytic/photothermal therapy of methicillin-resistant <i>Staphylococcus aureus</i> infections. Nanoscale, 2022, 14, 9796-9805.	5.6	4
279	Colorimetric detection and efficient monitoring of a potential biomarker of lumbar disc herniation using carbon nanotube-based probe. Science China Chemistry, 2016, 59, 493-496.	8.2	3
280	A Conjugated Polyelectrolyte with Pendant High Dense Short-Alkyl-Chain-Bridged Cationic Ions: Analyte-Induced Light-Up and Label-Free Fluorescent Sensing of Tumor Markers. Polymers, 2017, 9, 227.	4.5	3
281	Electronic properties of arsenene nanoribbons for FET application. Optical and Quantum Electronics, 2020, 52, 1.	3.3	3
282	DNA Origamiâ€Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie, 2021, 133, 11801-11807.	2.0	3
283	Cell imaging with multi-color DNA framework probes. Chemical Communications, 2021, 57, 11318-11321.	4.1	3
284	Self-transformation synthesis of hierarchically porous benzene-bridged organosilica nanoparticles for efficient drug delivery. Journal of Colloid and Interface Science, 2022, 608, 1393-1400.	9.4	3
285	An unusual (3,4)-connected cubic-C3N4 type network constructed with [FeIII(Tp)(CN)3]â^' (Tpâ^' =) Tj ETQq1 1 (0.7 <u>84</u> 314 i	rgBT/Overlo
286	Selfâ€assembly of Micrometerâ€long DNA Nanoribbons with Four Oligonucleotides. Chinese Journal of Chemistry, 2015, 33, 522-526.	4.9	2
287	Synthesis, structural characterization' and reactivity of a bis(phosphine)(silyl) platinum(II) complex. Journal of Coordination Chemistry, 2015, 68, 4203-4211.	2.2	2
288	A target-mediated fuel-initiated molecular machine for high-sensitive fluorescence assay of the ZIKV gene via strand displacement reaction-based signal recovery and cycling amplification. Analyst, The, 2020, 145, 5475-5481.	3.5	2

#	Article	IF	CITATIONS
289	A zwitterionic red-emitting water-soluble conjugated polymer with high resistance to nonspecific binding for two-photon cell imaging and good singlet oxygen production capability. New Journal of Chemistry, 2021, 45, 15607-15617.	2.8	2
290	Dysbiosis of gut microbiota and intestinal damage in mice induced by a single intravenous exposure to CdTe quantum dots at low concentration. Journal of Applied Toxicology, 2022, 42, 1757-1765.	2.8	2
291	Sensors: DNA-Templated Silver Nanoclusters for Multiplexed Fluorescent DNA Detection (Small) Tj ETQq1 1 0.78	4314 rgBT 10.0	/ / Overlock 10