T-Y Dora Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1931222/publications.pdf

Version: 2024-02-01

279487 360668 2,259 37 23 35 citations h-index g-index papers 43 43 43 1873 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cell-Free Gene Expression Dynamics in Synthetic Cell Populations. ACS Synthetic Biology, 2022, 11, 205-215.	1.9	38
2	Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells. Nature Chemistry, 2022, 14, 32-39.	6.6	45
3	Charge-density reduction promotes ribozyme activity in RNA–peptide coacervates via RNA fluidization and magnesium partitioning. Nature Chemistry, 2022, 14, 407-416.	6.6	41
4	Characterization of RNA content in individual phase-separated coacervate microdroplets. Nature Communications, 2022, 13, 2626.	5.8	14
5	Can coacervation unify disparate hypotheses in the origin of cellular life?. Current Opinion in Colloid and Interface Science, 2021, 52, 101415.	3.4	50
6	Enhanced Ribozymeâ€Catalyzed Recombination and Oligonucleotide Assembly in Peptideâ€RNA Condensates. Angewandte Chemie - International Edition, 2021, 60, 26096-26104.	7.2	25
7	Building synthetic multicellular systems using bottom–up approaches. Current Opinion in Systems Biology, 2020, 24, 56-63.	1.3	16
8	Frontispiz: Reversible pHâ€Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie, 2020, 132, .	1.6	1
9	Frontispiece: Reversible pHâ€Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie - International Edition, 2020, 59, .	7.2	O
10	Controlling Protein Nanocage Assembly with Hydrostatic Pressure. Journal of the American Chemical Society, 2020, 142, 20640-20650.	6.6	17
11	Spontaneous membrane-less multi-compartmentalization <i>via</i> aqueous two-phase separation in complex coacervate micro-droplets. Chemical Communications, 2020, 56, 12717-12720.	2.2	39
12	Highâ€Throughput Synthesis and Screening of Functional Coacervates Using Microfluidics. ChemSystemsChem, 2020, 2, e2000022.	1.1	32
13	Toward Engineering Biosystems With Emergent Collective Functions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 705.	2.0	22
14	Reversible pHâ∈Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie - International Edition, 2020, 59, 5950-5957.	7.2	139
15	Reversible pHâ€Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie, 2020, 132, 6006-6013.	1.6	29
16	Special Issue on Bottomâ€Up Synthetic Biology. ChemBioChem, 2019, 20, 2533-2534.	1.3	13
17	<i>ln vitro</i> gene expression and detergent-free reconstitution of active proteorhodopsin in lipid vesicles. Experimental Biology and Medicine, 2019, 244, 314-322.	1.1	3
18	Microfluidic Tools for Bottom-Up Synthetic Cellularity. CheM, 2019, 5, 1727-1742.	5.8	33

#	Article	IF	CITATIONS
19	Directed Growth of Biomimetic Microcompartments. Advanced Biology, 2019, 3, e1800314.	3.0	25
20	Gene-Mediated Chemical Communication in Synthetic Protocell Communities. ACS Synthetic Biology, 2018, 7, 339-346.	1.9	136
21	Microfluidic formation of proteinosomes. Chemical Communications, 2018, 54, 287-290.	2.2	46
22	Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nature Communications, 2018, 9, 3643.	5.8	225
23	MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angewandte Chemie, 2018, 130, 13566-13577.	1.6	27
24	MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angewandte Chemie - International Edition, 2018, 57, 13382-13392.	7.2	234
25	Polynucleotides in cellular mimics: Coacervates and lipid vesicles. Current Opinion in Colloid and Interface Science, 2016, 26, 50-57.	3.4	41
26	Microfluidic Formation of Membraneâ€Free Aqueous Coacervate Droplets in Water. Angewandte Chemie - International Edition, 2015, 54, 8398-8401.	7.2	73
27	In vitro gene expression within membrane-free coacervate protocells. Chemical Communications, 2015, 51, 11429-11432.	2.2	161
28	Structural studies of the lamellar to bicontinuous gyroid cubic (QGII) phase transitions under limited hydration conditions. Soft Matter, 2015, 11, 1991-1997.	1.2	10
29	Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases. Soft Matter, 2015, 11, 8789-8800.	1.2	21
30	Quantitative sensing of microviscosity in protocells and amyloid materials using fluorescence lifetime imaging of molecular rotors. , 2014, , .		3
31	Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nature Chemistry, 2014, 6, 527-533.	6.6	314
32	The effects of pressure and temperature on the energetics and pivotal surface in a monoacylglycerol/water gyroid inverse bicontinuous cubic phase. Soft Matter, 2014, 10, 3009-3015.	1.2	9
33	Synthetic cellularity based on non-lipid micro-compartments and protocell models. Current Opinion in Chemical Biology, 2014, 22, 1-11.	2.8	153
34	Small-molecule uptake in membrane-free peptide/nucleotide protocells. Soft Matter, 2013, 9, 7647.	1.2	62
35	Hydrostatic Pressure Effects on the Lamellar to Gyroid Cubic Phase Transition of Monolinolein at Limited Hydration. Langmuir, 2012, 28, 13018-13024.	1.6	34
36	Engineering bicontinuous cubic structures at the nanoscaleâ€"the role of chain splay. Soft Matter, 2010, 6, 3191.	1.2	96

#	Article	IF	CITATIONS
37	Enhanced ribozyme atalyzed recombination and oligonucleotide assembly in peptideâ€RNA condensates. Angewandte Chemie, 0, , .	1.6	5