List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1931179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caffeine and Adenosine. Journal of Alzheimer's Disease, 2010, 20, S3-S15.	1.2	360
2	Fine-tuning neuromodulation by adenosine. Trends in Pharmacological Sciences, 2000, 21, 341-346.	4.0	237
3	Preferential Release of ATP and Its Extracellular Catabolism as a Source of Adenosine upon High―but Not Lowâ€Frequency Stimulation of Rat Hippocampal Slices. Journal of Neurochemistry, 1996, 67, 2180-2187.	2.1	232
4	Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation. Journal of Neuroscience, 2012, 32, 11750-11762.	1.7	228
5	Adenosine: does it have a neuroprotective role after all?. Brain Research Reviews, 2000, 33, 258-274.	9.1	224
6	Inhibition by ATP of Hippocampal Synaptic Transmission Requires Localized Extracellular Catabolism by Ecto-Nucleotidases into Adenosine and Channeling to Adenosine A ₁ Receptors. Journal of Neuroscience, 1998, 18, 1987-1995.	1.7	207
7	Adenosine Receptors and the Central Nervous System. Handbook of Experimental Pharmacology, 2009, , 471-534.	0.9	204
8	Activation of Adenosine A2A Receptor Facilitates Brain-Derived Neurotrophic Factor Modulation of Synaptic Transmission in Hippocampal Slices. Journal of Neuroscience, 2004, 24, 2905-2913.	1.7	161
9	Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. NeuroReport, 1995, 6, 1097-1100.	0.6	153
10	Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. British Journal of Pharmacology, 1996, 119, 253-260.	2.7	147
11	Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2020, 14, 90.	1.8	145
12	Modification of A-i and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. NeuroReport, 1995, 6, 1583.	0.6	141
13	Excitatory and Inhibitory Effects of A ₁ and A _{2A} Adenosine Receptor Activation on the Electrically Evoked [³ H]Acetylcholine Release from Different Areas of the Rat Hippocampus. Journal of Neurochemistry, 1994, 63, 207-214.	2.1	141
14	On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction Journal of Physiology, 1987, 384, 571-585.	1.3	135
15	Early Changes of Neuromuscular Transmission in the SOD1(G93A) Mice Model of ALS Start Long before Motor Symptoms Onset. PLoS ONE, 2013, 8, e73846.	1.1	131
16	Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve endings of the rat. British Journal of Pharmacology, 1991, 103, 1614-1620.	2.7	128
17	Adenosine A2A receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Molecular Psychiatry, 2013, 18, 320-331.	4.1	124
18	A1R–A2AR heteromers coupled to Gs and Gi/O proteins modulate GABA transport into astrocytes. Purinergic Signalling, 2013, 9, 433-449.	1.1	123

#	Article	IF	CITATIONS
19	Evidence for the presence of excitatory A2 adenosine receptors in the rat hippocampus. Neuroscience Letters, 1992, 138, 41-44.	1.0	121
20	Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology, 2008, 54, 924-933.	2.0	120
21	Enhancement of LTP in Aged Rats is Dependent on Endogenous BDNF. Neuropsychopharmacology, 2011, 36, 1823-1836.	2.8	117
22	Spintronic platforms for biomedical applications. Lab on A Chip, 2012, 12, 546-557.	3.1	112
23	Adenosine: setting the stage for plasticity. Trends in Neurosciences, 2013, 36, 248-257.	4.2	112
24	Lipid rafts, synaptic transmission and plasticity: Impact in age-related neurodegenerative diseases. Neuropharmacology, 2013, 64, 97-107.	2.0	102
25	Enhanced Adenosine A2A Receptor Facilitation of Synaptic Transmission in the Hippocampus of Aged Rats. Journal of Neurophysiology, 2003, 90, 1295-1303.	0.9	97
26	Tuning and Fine-Tuning of Synapses with Adenosine. Current Neuropharmacology, 2009, 7, 180-194.	1.4	93
27	Adenosine and adenine nucleotides are independently released from both the nerve terminals and the muscle fibres upon electrical stimulation of the innervated skeletal muscle of the frog. Pflugers Archiv European Journal of Physiology, 1993, 424, 503-510.	1.3	89
28	Activation of Synaptic NMDA Receptors by Action Potential-Dependent Release of Transmitter during Hypoxia Impairs Recovery of Synaptic Transmission on Reoxygenation. Journal of Neuroscience, 2001, 21, 8564-8571.	1.7	89
29	The inhibitory adenosine receptor at the neuromuscular junction and hippocampus of the rat: antagonism by 1,3,8â€substituted xanthines. British Journal of Pharmacology, 1990, 101, 453-459.	2.7	88
30	Adenosine and Related Drugs in Brain Diseases: Present and Future in Clinical Trials. Current Topics in Medicinal Chemistry, 2011, 11, 1087-1101.	1.0	87
31	Influence of age on BDNF modulation of hippocampal synaptic transmission: Interplay with adenosine A2A receptors. Hippocampus, 2007, 17, 577-585.	0.9	85
32	Dysregulation of TrkB Receptors and BDNF Function by Amyloid-Î ² Peptide is Mediated by Calpain. Cerebral Cortex, 2015, 25, 3107-3121.	1.6	84
33	Modification of adenosine modulation of synaptic transmission in the hippocampus of aged rats. British Journal of Pharmacology, 2000, 131, 1629-1634.	2.7	83
34	Ecto-5'-Nucleotidase Is Associated with Cholinergic Nerve Terminals in the Hippocampus but Not in the Cerebral Cortex of the Rat. Journal of Neurochemistry, 1992, 59, 657-666.	2.1	82
35	Adenosine A2A Receptor Modulation of Hippocampal CA3-CA1 Synapse Plasticity During Associative Learning in Behaving Mice. Neuropsychopharmacology, 2009, 34, 1865-1874.	2.8	82
36	Impaired TrkB receptor signaling contributes to memory impairment in APP/PS1 mice. Neurobiology of Aging, 2012, 33, 1122.e23-1122.e39.	1.5	81

#	Article	IF	CITATIONS
37	MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Molecular Neurobiology, 2015, 51, 1168-1183.	1.9	80
38	Adenosine A 2A receptors control the extracellular levels of adenosine through modulation of nucleoside transporters activity in the rat hippocampus. Journal of Neurochemistry, 2005, 93, 595-604.	2.1	79
39	Maternal separation impairs long term-potentiation in CA1-CA3 synapses and hippocampal-dependent memory in old rats. Neurobiology of Aging, 2014, 35, 1680-1685.	1.5	79
40	Participation of adenosine receptors in neuroprotection. Drug News and Perspectives, 2003, 16, 80.	1.9	77
41	Enhancement of AMPA currents and GluR1 membrane expression through PKAâ€coupled adenosine A _{2A} receptors. Hippocampus, 2012, 22, 276-291.	0.9	76
42	Adenosine A2A receptors stimulate acetylcholine release from nerve terminals of the rat hippocampus. Neuroscience Letters, 1995, 196, 41-44.	1.0	74
43	Activation of Type 1 Cannabinoid Receptor (CB1R) Promotes Neurogenesis in Murine Subventricular Zone Cell Cultures. PLoS ONE, 2013, 8, e63529.	1.1	67
44	Chapter 23 Purinergic regulation of acetylcholine release. Progress in Brain Research, 1996, 109, 231-241.	0.9	66
45	Interleukin-6 Upregulates Neuronal Adenosine A1 Receptors: Implications for Neuromodulation and Neuroprotection. Neuropsychopharmacology, 2008, 33, 2237-2250.	2.8	63
46	Neuritic growth impairment and cell death by unconjugated bilirubin is mediated by NO and glutamate, modulated by microglia, and prevented by glycoursodeoxycholic acid and interleukin-10. Neuropharmacology, 2012, 62, 2398-2408.	2.0	63
47	Brain-Derived Neurotrophic Factor (BDNF) Role in Cannabinoid-Mediated Neurogenesis. Frontiers in Cellular Neuroscience, 2018, 12, 441.	1.8	63
48	Extracellular metabolism of adenine nucleotides and adenosine in the innervated skeletal muscle of the frog. European Journal of Pharmacology, 1991, 197, 83-92.	1.7	61
49	Purinergic Modulation of the Evoked Release of [3H]Acetylcholine from the Hippocampus and Cerebral Cortex of the Rat: Role of the Ectonucleotidases. European Journal of Neuroscience, 1994, 6, 33-42.	1.2	61
50	Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection. British Journal of Pharmacology, 2009, 158, 15-22.	2.7	61
51	Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology, 2016, 104, 226-242.	2.0	61
52	Triggering of BDNF facilitatory action on neuromuscular transmission by adenosine A2A receptors. Neuroscience Letters, 2006, 404, 143-147.	1.0	60
53	Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation. Brain Research, 2015, 1621, 102-113.	1.1	60
54	Brain-derived Neurotrophic Factor (BDNF) Enhances GABA Transport by Modulating the Trafficking of GABA Transporter-1 (GAT-1) from the Plasma Membrane of Rat Cortical Astrocytes. Journal of Biological Chemistry, 2011, 286, 40464-40476.	1.6	59

#	Article	IF	CITATIONS
55	Downregulated Glia Interplay and Increased miRNA-155 as Promising Markers to Track ALS at anÂEarly Stage. Molecular Neurobiology, 2017, 55, 4207-4224.	1.9	59
56	NLRP3 Inflammasome: A Starring Role in Amyloid-β- and Tau-Driven Pathological Events in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 83, 939-961.	1.2	55
57	Modulation and metamodulation of synapses by adenosine. Acta Physiologica, 2010, 199, 161-169.	1.8	54
58	Homeostatic Control of Synaptic Activity by Endogenous Adenosine is Mediated by Adenosine Kinase. Cerebral Cortex, 2014, 24, 67-80.	1.6	54
59	Inhibition of NMDA Receptors Prevents the Loss of BDNF Function Induced by Amyloid β. Frontiers in Pharmacology, 2018, 9, 237.	1.6	54
60	Adenosine A2A receptors enhance GABA transport into nerve terminals by restraining PKC inhibition of GATâ€1. Journal of Neurochemistry, 2009, 109, 336-347.	2.1	52
61	On the adenosine receptor and adenosine inactivation at the rat diaphragm neuromuscular junction. British Journal of Pharmacology, 1988, 94, 109-120.	2.7	51
62	Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biology, 2020, 18, 9.	1.7	51
63	Activation of Adenosine A2A Receptors Induces TrkB Translocation and Increases BDNF-Mediated Phospho-TrkB Localization in Lipid Rafts: Implications for Neuromodulation. Journal of Neuroscience, 2010, 30, 8468-8480.	1.7	50
64	Synaptic mechanisms of adenosine A _{2A} receptorâ€mediated hyperexcitability in the hippocampus. Hippocampus, 2015, 25, 566-580.	0.9	49
65	Modeling Rett Syndrome With Human Patient-Specific Forebrain Organoids. Frontiers in Cell and Developmental Biology, 2020, 8, 610427.	1.8	49
66	Ageâ€related changes of glycine receptor at the rat hippocampus: from the embryo to the adult. Journal of Neurochemistry, 2011, 118, 339-353.	2.1	48
67	Regulation of Hippocampal Cannabinoid CB1 Receptor Actions by Adenosine A1 Receptors and Chronic Caffeine Administration: Implications for the Effects of Δ9-Tetrahydrocannabinol on Spatial Memory. Neuropsychopharmacology, 2011, 36, 472-487.	2.8	48
68	Modulation of brain-derived neurotrophic factor (BDNF) actions in the nervous system by adenosine A2A receptors and the role of lipid rafts. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1340-1349.	1.4	47
69	On the type of receptor involved in the inhibitory action of adenosine at the neuromuscular junction. British Journal of Pharmacology, 1985, 84, 911-918.	2.7	45
70	P2Y ₁ receptor inhibits GABA transport through a calcium signalling-dependent mechanism in rat cortical astrocytes. Glia, 2014, 62, 1211-1226.	2.5	45
71	Tauroursodeoxycholic acid suppresses amyloid β-induced synaptic toxicity in vitro and in APP/PS1 mice. Neurobiology of Aging, 2013, 34, 551-561.	1.5	44
72	Interaction between Cannabinoid Type 1 and Type 2 Receptors in the Modulation of Subventricular Zone and Dentate Gyrus Neurogenesis. Frontiers in Pharmacology, 2017, 8, 516.	1.6	43

#	Article	IF	CITATIONS
73	Glutamate Transporters in Hippocampal LTD/LTP: Not Just Prevention of Excitotoxicity. Frontiers in Cellular Neuroscience, 2019, 13, 357.	1.8	42
74	Brain-derived neurotrophic factor facilitates glutamate and inhibits GABA release from hippocampal synaptosomes through different mechanisms. Brain Research, 2004, 1016, 72-78.	1.1	41
75	Postsynaptic Action of Brain-Derived Neurotrophic Factor Attenuates Â7 Nicotinic Acetylcholine Receptor-Mediated Responses in Hippocampal Interneurons. Journal of Neuroscience, 2008, 28, 5611-5618.	1.7	41
76	Adenosine A ₁ Receptor Suppresses Tonic GABA _A Receptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons. Cerebral Cortex, 2016, 26, 1081-1095.	1.6	41
77	BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes. Glia, 2015, 63, 2181-2197.	2.5	40
78	Differential Role of the Proteasome in the Early and Late Phases of BDNF-Induced Facilitation of LTP. Journal of Neuroscience, 2015, 35, 3319-3329.	1.7	40
79	Ischemia-induced synaptic plasticity drives sustained expression of calcium-permeable AMPA receptors in the hippocampus. Neuropharmacology, 2013, 65, 114-122.	2.0	39
80	Adenosine Kinase Deficiency in the Brain Results in Maladaptive Synaptic Plasticity. Journal of Neuroscience, 2016, 36, 12117-12128.	1.7	39
81	Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons. Brain Structure and Function, 2016, 221, 2777-2799.	1.2	39
82	GAT-3 Dysfunction Generates Tonic Inhibition in External Globus Pallidus Neurons in Parkinsonian Rodents. Cell Reports, 2018, 23, 1678-1690.	2.9	39
83	Role of Adenosine in Epilepsy and Seizures. Journal of Caffeine and Adenosine Research, 2020, 10, 45-60.	0.8	39
84	Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Research, 2006, 1113, 129-136.	1.1	38
85	1,3,8―and 1,3,7â€substituted xanthines: relative potency as adenosine receptor antagonists at the frog neuromuscular junction. British Journal of Pharmacology, 1989, 96, 211-219.	2.7	37
86	VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells. British Journal of Pharmacology, 2004, 143, 733-744.	2.7	37
87	Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation. Neuropharmacology, 2017, 117, 316-327.	2.0	37
88	Interactions between adenosine and phorbol esters or lithium at the frog neuromuscular junction. British Journal of Pharmacology, 1990, 100, 55-62.	2.7	36
89	Regulation of TrkB receptor translocation to lipid rafts by adenosine A2A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity. Purinergic Signalling, 2014, 10, 251-267.	1.1	36
90	Depression Assessment in Clinical Trials and Pre-clinical Tests: A Critical Review. Current Topics in Medicinal Chemistry, 2018, 18, 1677-1703.	1.0	35

#	Article	IF	CITATIONS
91	Effect of 5'-(N-Ethylcarboxamido)adenosine on Adenosine Transport in Cultured Chromaffin Cells. Journal of Neurochemistry, 1990, 54, 1941-1946.	2.1	33
92	Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals. Brain Research, 2008, 1219, 19-25.	1.1	33
93	GDNF control of the glutamatergic corticoâ€striatal pathway requires tonic activation of adenosine A _{2A} receptors. Journal of Neurochemistry, 2009, 108, 1208-1219.	2.1	33
94	Ex vivo model of epilepsy in organotypic slices—a new tool for drug screening. Journal of Neuroinflammation, 2018, 15, 203.	3.1	33
95	Interleukinâ€6â€ŧype cytokines in neuroprotection and neuromodulation: oncostatin M, but not leukemia inhibitory factor, requires neuronal adenosine A ₁ receptor function. Journal of Neurochemistry, 2010, 114, 1667-1677.	2.1	32
96	GlyT1 and GlyT2 in brain astrocytes: expression, distribution and function. Brain Structure and Function, 2014, 219, 817-830.	1.2	32
97	<p>In vivo Bio-Distribution and Toxicity Evaluation of Polymeric and Lipid-Based Nanoparticles: A Potential Approach for Chronic Diseases Treatment</p> . International Journal of Nanomedicine, 2020, Volume 15, 8609-8621.	3.3	32
98	Enhancement of transmission at the frog neuromuscular junction by adenosine deaminase: Evidence for an inhibitory role of endogenous adenosine on neuromuscular transmission. Neuroscience Letters, 1985, 62, 267-270.	1.0	31
99	Adenosine by activating A1 receptors prevents GABAA-mediated actions during hypoxia in the rat hippocampus. Brain Research, 1996, 732, 261-266.	1.1	31
100	Dopamine–Galanin Receptor Heteromers Modulate Cholinergic Neurotransmission in the Rat Ventral Hippocampus. Journal of Neuroscience, 2011, 31, 7412-7423.	1.7	31
101	Adenosine A2A Receptors Activation Facilitates Neuromuscular Transmission in the Pre-Symptomatic Phase of the SOD1(G93A) ALS Mice, but Not in the Symptomatic Phase. PLoS ONE, 2014, 9, e104081.	1.1	31
102	Impact of inÂvivo chronic blockade of adenosine A2A receptors on the BDNF-mediated facilitation of LTP. Neuropharmacology, 2014, 83, 99-106.	2.0	31
103	Adenosine A _{2A} receptors facilitate synaptic NMDA currents in CA1 pyramidal neurons. British Journal of Pharmacology, 2018, 175, 4386-4397.	2.7	31
104	VIP enhances synaptic transmission to hippocampal CA1 pyramidal cells through activation of both VPAC1 and VPAC2 receptors. Brain Research, 2005, 1049, 52-60.	1.1	30
105	BDNF-induced presynaptic facilitation of GABAergic transmission in the hippocampus of young adults is dependent of TrkB and adenosine A2A receptors. Purinergic Signalling, 2016, 12, 283-294.	1.1	29
106	Challenges of BDNF-based therapies: From common to rare diseases. Pharmacological Research, 2020, 162, 105281.	3.1	29
107	Neural commitment of human pluripotent stem cells under defined conditions recapitulates neural development and generates patientâ€specific neural cells. Biotechnology Journal, 2015, 10, 1578-1588.	1.8	28
108	Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules, 2019, 24, 1350.	1.7	28

#	Article	IF	CITATIONS
109	Enhancement of tetrodotoxinâ€induced axonal blockade by adenosine, adenosine analogues, dibutyryl cyclic AMP and methylxanthines in the frog sciatic nerve. British Journal of Pharmacology, 1984, 83, 485-492.	2.7	27
110	Adenine nucleotide analogues, including γ-phosphate-substituted analogues, are metabolised extracellularly in innervated frog sartorius muscle. European Journal of Pharmacology, 1992, 222, 49-59.	1.7	27
111	Cannabinoid CB1 and adenosine A1 receptors independently inhibit hippocampal synaptic transmission. European Journal of Pharmacology, 2009, 623, 41-46.	1.7	27
112	Chronic, intermittent treatment with a cannabinoid receptor agonist impairs recognition memory and brain network functional connectivity. Journal of Neurochemistry, 2018, 147, 71-83.	2.1	27
113	An Adenosine Analogue Inhibits NMDA Receptor-Mediated Responses in Bipolar Cells of the Rat Retina. Experimental Eye Research, 1999, 68, 367-370.	1.2	26
114	Neuroprotection afforded by adenosine A _{2A} receptor blockade is modulated by corticotrophinâ€releasing factor (<scp>CRF</scp>) in glutamate injured cortical neurons. Journal of Neurochemistry, 2012, 123, 1030-1040.	2.1	26
115	Hippocampal <scp>GABA</scp> ergic transmission: a new target for adenosine control of excitability. Journal of Neurochemistry, 2016, 139, 1056-1070.	2.1	26
116	Separation of adenosine triphosphate and its degradation products in innervated muscle of the frog by reverse phase high-performance liquid chromatography. Chromatographia, 1989, 28, 610-612.	0.7	25
117	Predominance of Adenosine Excitatory over Inhibitory Effects on Transmission at the Neuromuscular Junction of Infant Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 153-163.	1.3	25
118	Challenges and Promises in the Development of Neurotrophic Factor-Based Therapies for Parkinson's Disease. Drugs and Aging, 2014, 31, 239-261.	1.3	25
119	Enhanced LTP in aged rats: Detrimental or compensatory?. Neuropharmacology, 2017, 114, 12-19.	2.0	25
120	Dual Influence of Endocannabinoids on Long-Term Potentiation of Synaptic Transmission. Frontiers in Pharmacology, 2017, 8, 921.	1.6	25
121	Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission. Purinergic Signalling, 2015, 11, 471-480.	1.1	24
122	A1 and A2A receptor activation by endogenous adenosine is required for VIP enhancement of K+-evoked [3H]-GABA release from rat hippocampal nerve terminals. Neuroscience Letters, 2008, 430, 207-212.	1.0	23
123	Homeostatic plasticity induced by brief activity deprivation enhances long-term potentiation in the mature rat hippocampus. Journal of Neurophysiology, 2014, 112, 3012-3022.	0.9	23
124	Adenosine A2A Receptors as novel upstream regulators of BDNF-mediated attenuation of hippocampal Long-Term Depression (LTD). Neuropharmacology, 2014, 79, 389-398.	2.0	23
125	Adenosine A2A receptor activation is determinant for BDNF actions upon GABA and glutamate release from rat hippocampal synaptosomes. Purinergic Signalling, 2015, 11, 607-612.	1.1	23
126	Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats. Molecular Neurobiology, 2018, 55, 3725-3738.	1.9	23

#	Article	IF	CITATIONS
127	Anxiety Assessment in Pre-clinical Tests and in Clinical Trials: A Critical Review. Current Topics in Medicinal Chemistry, 2018, 18, 1656-1676.	1.0	23
128	Chapter 15 Adenine nucleotides as inhibitors of synaptic transmission: Role of localised ectonucleotidases. Progress in Brain Research, 1999, 120, 183-192.	0.9	22
129	Modulation of subventricular zone oligodendrogenesis: a role for hemopressin?. Frontiers in Cellular Neuroscience, 2014, 8, 59.	1.8	22
130	Amyotrophic Lateral Sclerosis (ALS) and Adenosine Receptors. Frontiers in Pharmacology, 2018, 9, 267.	1.6	22
131	Memory deficits induced by chronic cannabinoid exposure are prevented by adenosine A2AR receptor antagonism. Neuropharmacology, 2019, 155, 10-21.	2.0	21
132	VPAC ₁ and VPAC ₂ receptor activation on GABA release from hippocampal nerve terminals involve several different signalling pathways. British Journal of Pharmacology, 2017, 174, 4725-4737.	2.7	20
133	Platinum Nanoparticle-Based Microreactors as Support for Neuroblastoma Cells. ACS Applied Materials & Interfaces, 2018, 10, 7581-7592.	4.0	20
134	Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacological Research, 2021, 163, 105363.	3.1	19
135	Regulation of hippocampal postnatal and adult neurogenesis by adenosine <scp> A _{2A} </scp> receptor: Interaction with brainâ€derived neurotrophic factor. Stem Cells, 2021, 39, 1362-1381.	1.4	19
136	Tonic adenosine A1 and A2A receptor activation is required for the excitatory action of VIP on synaptic transmission in the CA1 area of the hippocampus. Neuropharmacology, 2007, 52, 313-320.	2.0	18
137	Brain-Sparing Sympathofacilitators Mitigate Obesity without Adverse Cardiovascular Effects. Cell Metabolism, 2020, 31, 1120-1135.e7.	7.2	18
138	Solubilized Rat Brain Adenosine Receptors Have Two High-Affinity Binding Sites for l, 3-Dipropyl-8-Cyclopentylxanthine. Journal of Neurochemistry, 1991, 57, 1165-1171.	2.1	17
139	Effects of Carbamazepine and Novel 10,11-Dihydro-5H -Dibenz[b,f]Azepine-5-Carboxamide Derivatives on Synaptic Transmission in Rat Hippocampal Slices. Basic and Clinical Pharmacology and Toxicology, 2002, 90, 208-213.	0.0	17
140	Antagonism of tetrodotoxin―and procaineâ€induced axonal blockade by adenine nucleotides in the frog sciatic nerve. British Journal of Pharmacology, 1984, 81, 277-282.	2.7	16
141	Modulation of GABA Transport by Adenosine A1R-A2AR Heteromers, Which Are Coupled to Both Gs- and Gi/o-Proteins. Journal of Neuroscience, 2011, 31, 15629-15639.	1.7	16
142	The Mitochondrial Antioxidant Sirtuin3 Cooperates with Lipid Metabolism to Safeguard Neurogenesis in Aging and Depression. Cells, 2022, 11, 90.	1.8	16
143	Hypoxia–Ischemia Alters Nucleotide and Nucleoside Catabolism and Na+,K+-ATPase Activity in the Cerebral Cortex of Newborn Rats. Neurochemical Research, 2013, 38, 886-894.	1.6	15
144	Mechanisms of Regulation of Olfactory Transduction and Adaptation in the Olfactory Cilium. PLoS ONE, 2014, 9, e105531.	1.1	15

#	Article	IF	CITATIONS
145	Biological activities of N6,C8-disubstituted adenosine derivatives as partial agonists at rat brain adenosine A1 receptors. European Journal of Pharmacology, 1997, 334, 299-307.	1.7	14
146	Brain-derived neurotrophic factor mediates neuroprotection against A β -induced toxicity through a mechanism independent on adenosine 2A receptor activation. Growth Factors, 2015, 33, 298-308.	0.5	14
147	On the Assembly of Microreactors with Parallel Enzymatic Pathways. Advanced Biology, 2018, 2, e1700244.	3.0	14
148	Nitric oxide mediates interactions between GABAA receptors and adenosine A1 receptors in the rat hippocampus. European Journal of Pharmacology, 2006, 543, 32-39.	1.7	13
149	The neurosphere assay: an effective in vitro technique to study neural stem cells. Neural Regeneration Research, 2021, 16, 2229.	1.6	13
150	Modeling the functional network of primary intercellular Ca2+ wave propagation in astrocytes and its application to study drug effects. Journal of Theoretical Biology, 2014, 356, 201-212.	0.8	12
151	The giant miniature endplate potentials frequency is increased in aged rats. Neuroscience Letters, 2015, 584, 224-229.	1.0	12
152	Adenosine A ₁ Receptor Activation Inhibits Basal Accumulation of Inositol Phosphates in Rat Hippocampus. Basic and Clinical Pharmacology and Toxicology, 1998, 82, 189-192.	0.0	11
153	VPAC2 Receptor Activation Mediates VIP Enhancement of Population Spikes in the CA1 Area of the Hippocampus. Annals of the New York Academy of Sciences, 2006, 1070, 210-214.	1.8	11
154	Neuromuscular transmission modulation by adenosine upon aging. Neurobiology of Aging, 2012, 33, 2869-2880.	1.5	11
155	Erythropoietin Induces Homeostatic Plasticity at Hippocampal Synapses. Cerebral Cortex, 2018, 28, 2795-2809.	1.6	11
156	From Cannabinoids and Neurosteroids to Statins and the Ketogenic Diet: New Therapeutic Avenues in Rett Syndrome?. Frontiers in Neuroscience, 2019, 13, 680.	1.4	11
157	Calcitonin Gene-Related Peptide in the Hamster Seminal Vesicle and Coagulating Gland: An Immunohistochemical, Autoradiographical, and Pharmacological Study. Peptides, 1996, 17, 1189-1195.	1.2	10
158	Neuroprotection during hypoxic insults: Role of adenosine. Drug Development Research, 2001, 52, 291-295.	1.4	10
159	Adenosine receptor interactions in the hippocampus. Drug Development Research, 2001, 52, 337-345.	1.4	10
160	The Combined Inhibitory Effect of the Adenosine A ₁ and Cannabinoid CB ₁ Receptors on cAMP Accumulation in the Hippocampus Is Additive and Independent of A ₁ Receptor Desensitization. BioMed Research International, 2015, 2015, 1-9.	0.9	10
161	Rare Diseases of Neurodevelopment: Maintain the Mystery or Use a Dazzling Tool for Investigation? The Case of Rett Syndrome. Neuroscience, 2020, 439, 146-152.	1.1	10
162	Caffeine has a dual influence on NMDA receptor–mediated glutamatergic transmission at the hippocampus. Purinergic Signalling, 2020, 16, 503-518.	1.1	10

#	Article	IF	CITATIONS
163	TrkB-ICD Fragment, Originating From BDNF Receptor Cleavage, Is Translocated to Cell Nucleus and Phosphorylates Nuclear and Axonal Proteins. Frontiers in Molecular Neuroscience, 2019, 12, 4.	1.4	9
164	Impairment of adenosinergic system in Rett syndrome: Novel therapeutic target to boost BDNF signalling. Neurobiology of Disease, 2020, 145, 105043.	2.1	9
165	The Neuroprotective Action of Amidated-Kyotorphin on Amyloid β Peptide-Induced Alzheimer's Disease Pathophysiology. Frontiers in Pharmacology, 2020, 11, 985.	1.6	9
166	Sustained NMDA receptor hypofunction impairs brain-derived neurotropic factor signalling in the PFC, but not in the hippocampus, and disturbs PFC-dependent cognition in mice. Journal of Psychopharmacology, 2021, 35, 730-743.	2.0	9
167	Ascorbate/Fe3+-induced peroxidation and inhibition of the binding of A1 adenosine receptor ligands in rat brain membranes. Neurochemistry International, 1995, 26, 263-268.	1.9	8
168	Pertussis toxin-sensitive G proteins mediate the inhibition of basal phosphoinositide metabolism caused by adenosine A1 receptors in rat hippocampal slices. Neurochemical Research, 2002, 27, 1707-1711.	1.6	8
169	Neuroinflammation after neonatal hypoxia–ischemia is associated with alterations in the purinergic system: adenosine deaminase 1 isoenzyme is the most predominant after insult. Molecular and Cellular Biochemistry, 2015, 403, 169-177.	1.4	8
170	Adenosine inhibits human astrocyte proliferation independently of adenosine receptor activation. Journal of Neurochemistry, 2020, 153, 455-467.	2.1	8
171	High Caloric Diet Induces Memory Impairment and Disrupts Synaptic Plasticity in Aged Rats. Current Issues in Molecular Biology, 2021, 43, 2305-2319.	1.0	8
172	Microglia Depletion from Primary Glial Cultures Enables to Accurately Address the Immune Response of Astrocytes. Biomolecules, 2022, 12, 666.	1.8	8
173	Inhibitory effects of forskolin and papaverine on nerve conduction partially blocked by tetrodotoxin in the frog sciatic nerve. British Journal of Pharmacology, 1985, 85, 309-313.	2.7	7
174	N6-Cyclohexyladenosine Inhibits Veratridine-Stimulated Na Uptake by Rat Brain Synaptosomes. Journal of Neurochemistry, 1988, 50, 899-903.	2.1	7
175	Is inhibition of neurotransmitter release mediated by A3 receptors? Subtypes of adenosine receptors. Trends in Pharmacological Sciences, 1988, 9, 279-280.	4.0	7
176	On the high affinity binding site for [³ H]â€1,3â€dipropylâ€8 yclopentylxanthine in frog brain membranes. British Journal of Pharmacology, 1993, 109, 518-523.	2.7	7
177	From A1 to A3 en passant Through A2A Receptors in the Hippocampus: Pharmacological Implications. CNS and Neurological Disorders - Drug Targets, 2012, 11, 652-663.	0.8	7
178	The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus. Frontiers in Pharmacology, 2016, 7, 103.	1.6	7
179	Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes. Frontiers in Molecular Neuroscience, 2017, 10, 444.	1.4	7
180	A New Viewpoint on the Etiopathogenesis of Depression: Insights From the Neurophysiology of Deep Brain Stimulation in Parkinson's Disease and Treatment-Resistant Depression. Frontiers in Psychiatry, 2021, 12, 607339.	1.3	7

#	Article	IF	CITATIONS
181	Adenosine Inhibits Cell Proliferation Differently in Human Astrocytes and in Glioblastoma Cell Lines. Neuroscience, 2021, 467, 122-133.	1.1	7
182	Astrocytes in Amyotrophic Lateral Sclerosis. , 0, , 35-54.		7
183	Unexpected short- and long-term effects of chronic adolescent HU-210 exposure on emotional behavior. Neuropharmacology, 2022, 214, 109155.	2.0	7
184	BDNF modulates glycine uptake in hippocampal synaptosomes by decreasing membrane insertion of glycine transporter 2. Neurochemistry International, 2016, 99, 94-102.	1.9	6
185	Multicompartment Microreactors Prevent Excitotoxic Dysfunctions In Rat Primary Cortical Neurons. Advanced Biology, 2020, 4, e2000139.	3.0	6
186	Manganese dioxide nanosheet-containing reactors as antioxidant support for neuroblastoma cells. Journal of Materials Chemistry B, 2022, 10, 4672-4683.	2.9	6
187	Modulation of cGMP accumulation by adenosine A1 receptors at the hippocampus: Influence of cGMP levels and gender. European Journal of Pharmacology, 2014, 744, 83-90.	1.7	5
188	On the role of stigmergy in cognition. Progress in Artificial Intelligence, 2017, 6, 79-86.	1.5	5
189	Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. Journal of Caffeine and Adenosine Research, 2019, 9, 129-144.	0.8	5
190	Adenosine A3 Receptor Signaling in the Central Nervous System. , 2010, , 165-188.		5
191	Adenosine A _{2A} receptors in neuronal outgrowth: a target for nerve regeneration?. Neural Regeneration Research, 2016, 11, 706.	1.6	5
192	Purinoceptors and synaptic plasticity. Drug Development Research, 1996, 39, 353-360.	1.4	4
193	Role of Adenosine Receptors in Epileptic Seizures. , 2018, , 309-350.		4
194	S327 phosphorylation of the presynaptic protein SEPTIN5 increases in the early stages of neurofibrillary pathology and alters the functionality of SEPTIN5. Neurobiology of Disease, 2022, 163, 105603.	2.1	4
195	Adenosine and epilepsy—thinking beyond A1 receptors. Purinergic Signalling, 2010, 6, 1-2.	1.1	3
196	Caffeine and Adenosine Receptor Modulation of Cannabinoid Influence Upon Cognitive Function. Journal of Caffeine Research, 2013, 3, 85-95.	1.0	3
197	Dissecting striatal adenosineâ€cannabinoid receptor interactions. New clues from rats overâ€expressing adenosine A2A receptors. Journal of Neurochemistry, 2016, 136, 897-899.	2.1	3
198	Dissecting neurovascular coupling mechanisms: a role for adenosine A _{2A} receptor. Journal of Neurochemistry, 2017, 140, 10-12.	2.1	3

#	Article	IF	CITATIONS
199	Downstream Pathways of Adenosine. , 2013, , 131-156.		3
200	Endogenous adenosine modulation of 22Na uptake by rat brain synaptosomes. Neurochemical Research, 2003, 28, 1591-1595.	1.6	2
201	Neuronal ENT1 takes up synaptic adenosine even under hypoxia/ischemia. Journal of Neurochemistry, 2011, 118, 1-3.	2.1	2
202	Relative Contribution of Nerve Endings to the Release of Adenine Nucleotides in the Innervated from Sartorius Muscle. Nucleosides & Nucleotides, 1991, 10, 1189-1190.	0.5	1
203	On the High Affinity of 8 yclohexylcaffeine for the Presynaptic Inhibitory Adenosine Receptor Present in Rat Motor Nerve Terminals. Basic and Clinical Pharmacology and Toxicology, 1997, 80, 295-300.	0.0	1
204	Adenosine and Its Receptors as Potential Drug Targets in Amyotrophic Lateral Sclerosis. Journal of Caffeine and Adenosine Research, 2019, 9, 157-166.	0.8	1
205	Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. International Journal of Molecular Sciences, 2020, 21, 7309.	1.8	1
206	Adenosine A2A Receptors and Neurotrophic Factors: Relevance for Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 57-79.	0.4	1
207	Role of A2a Receptors in the Hippocampus and Motor Nerve Endings. , 1995, , 251-261.		1
208	A maestro role of adenosine A2A receptors in GABAergic synapses stabilization during postnatal neuronal maturation. Purinergic Signalling, 2022, 18, 157-159.	1.1	1
209	Influence of Adenosine on Synaptic Excitability. , 2017, , 45-76.		0
210	Microreactors: Multicompartment Microreactors Prevent Excitotoxic Dysfunctions In Rat Primary Cortical Neurons (Adv. Biosys. 10/2020). Advanced Biology, 2020, 4, 2070102.	3.0	0
211	Sustained Hippocampal Neural Plasticity Questions the Reproducibility of an Amyloid-β-Induced Alzheimer's Disease Model. Journal of Alzheimer's Disease, 2021, 82, 1183-1202.	1.2	0