## Chuanhou Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1930977/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Modeling of the Thermal State Change of Blast Furnace Hearth With Support Vector Machines. IEEE<br>Transactions on Industrial Electronics, 2012, 59, 1134-1145.                          | 7.9  | 136       |
| 2  | Data-Driven Time Discrete Models for Dynamic Prediction of the Hot Metal Silicon Content in the Blast Furnace—A Review. IEEE Transactions on Industrial Informatics, 2013, 9, 2213-2225. | 11.3 | 99        |
| 3  | Rule Extraction From Fuzzy-Based Blast Furnace SVM Multiclassifier for Decision-Making. IEEE<br>Transactions on Fuzzy Systems, 2014, 22, 586-596.                                        | 9.8  | 70        |
| 4  | Novel Just-In-Time Learning-Based Soft Sensor Utilizing Non-Gaussian Information. IEEE Transactions on Control Systems Technology, 2014, 22, 360-368.                                    | 5.2  | 64        |
| 5  | Binary Coding SVMs for the Multiclass Problem of Blast Furnace System. IEEE Transactions on Industrial Electronics, 2013, 60, 3846-3856.                                                 | 7.9  | 63        |
| 6  | Application of Least Squares Support Vector Machines to Predict the Silicon Content in Blast Furnace<br>Hot Metal. ISIJ International, 2008, 48, 1659-1661.                              | 1.4  | 51        |
| 7  | Guest Editorial: Special section on data-driven approaches for complex industrial systems. IEEE<br>Transactions on Industrial Informatics, 2013, 9, 2210-2212.                           | 11.3 | 51        |
| 8  | Constructing Multiple Kernel Learning Framework for Blast Furnace Automation. IEEE Transactions on Automation Science and Engineering, 2012, 9, 763-777.                                 | 5.2  | 48        |
| 9  | A chaosâ€based iterated multistep predictor for blast furnace ironmaking process. AICHE Journal, 2009,<br>55, 947-962.                                                                   | 3.6  | 44        |
| 10 | A Slidingâ€window Smooth Support Vector Regression Model for Nonlinear Blast Furnace System. Steel<br>Research International, 2011, 82, 169-179.                                         | 1.8  | 35        |
| 11 | Modeling and Control of Complex Dynamic Systems: Applied Mathematical Aspects. Journal of Applied<br>Mathematics, 2012, 2012, 1-5.                                                       | 0.9  | 35        |
| 12 | Design of a multiple kernel learning algorithm for LS-SVM by convex programming. Neural Networks, 2011, 24, 476-483.                                                                     | 5.9  | 31        |
| 13 | Data-Driven Modeling Based on Volterra Series for Multidimensional Blast Furnace System. IEEE<br>Transactions on Neural Networks, 2011, 22, 2272-2283.                                   | 4.2  | 29        |
| 14 | Linear Priors Mined and Integrated for Transparency of Blast Furnace Black-Box SVM Model. IEEE<br>Transactions on Industrial Informatics, 2020, 16, 3862-3870.                           | 11.3 | 23        |
| 15 | Assessing the Predictability for Blast Furnace System through Nonlinear Time Series Analysis.<br>Industrial & Engineering Chemistry Research, 2008, 47, 3037-3045.                       | 3.7  | 22        |
| 16 | Blast Furnace System Modeling by Multivariate Phase Space Reconstruction and Neural Networks.<br>Asian Journal of Control, 2013, 15, 553-561.                                            | 3.0  | 19        |
| 17 | Identification of multiscale nature and multiple dynamics of the blast furnace system from operating data. AICHE Journal, 2011, 57, 3448-3458.                                           | 3.6  | 16        |
| 18 | Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity. IEEE Transactions on Automatic Control, 2017, 62, 4159-4166.                                         | 5.7  | 16        |

Сниалнои Сао

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dataâ€based multiscale modeling for blast furnace system. AICHE Journal, 2014, 60, 2197-2210.                                                                                          | 3.6  | 14        |
| 20 | Lyapunov Function Partial Differential Equations for Chemical Reaction Networks: Some Special<br>Cases. SIAM Journal on Applied Dynamical Systems, 2019, 18, 1163-1199.                | 1.6  | 13        |
| 21 | Evidence of Chaotic Behavior in Noise From Industrial Process. IEEE Transactions on Signal<br>Processing, 2007, 55, 2877-2884.                                                         | 5.3  | 10        |
| 22 | Regressionâ€based analysis of multivariate nonâ€Gaussian datasets for diagnosing abnormal situations in chemical processes. AICHE Journal, 2014, 60, 148-159.                          | 3.6  | 8         |
| 23 | Multiscale dynamic analysis of blast furnace system based on intensive signal processing. Chaos, 2010, 20, 033102.                                                                     | 2.5  | 6         |
| 24 | Symmetric extreme learning machine. Neural Computing and Applications, 2013, 22, 551-558.                                                                                              | 5.6  | 6         |
| 25 | Soft sensor development using non-Gaussian Just-In-Time modeling. , 2011, , .                                                                                                          |      | 5         |
| 26 | Modeling and Control of Complex Dynamic Systems 2013. Journal of Applied Mathematics, 2013, 2013, 1-3.                                                                                 | 0.9  | 5         |
| 27 | Complex Balancing Reconstructed to the Asymptotic Stability of Mass-Action Chemical Reaction<br>Networks with Conservation Laws. SIAM Journal on Applied Mathematics, 2019, 79, 55-74. | 1.8  | 5         |
| 28 | Persistence of Delayed Complex Balanced Chemical Reaction Networks. IEEE Transactions on Automatic Control, 2021, 66, 1658-1669.                                                       | 5.7  | 5         |
| 29 | A Nonuniform Delay-Coordinate Embedding-Based Multiscale Predictor for Blast Furnace Systems. IEEE<br>Transactions on Control Systems Technology, 2021, 29, 2223-2230.                 | 5.2  | 4         |
| 30 | Incorporation of Data-Mined Knowledge into Black-Box SVM for Interpretability. ACM Transactions on<br>Intelligent Systems and Technology, 2023, 14, 1-22.                              | 4.5  | 4         |
| 31 | Using LSSVM model to predict the silicon content in hot metal based on KPCA feature extraction. , 2011, , .                                                                            |      | 3         |
| 32 | Realizations of quasi-polynomial systems and application for stability analysis. Journal of<br>Mathematical Chemistry, 2017, 55, 1597-1621.                                            | 1.5  | 3         |
| 33 | Structured sparsity modeling for improved multivariate statistical analysis based fault isolation.<br>Journal of Process Control, 2021, 98, 66-78.                                     | 3.3  | 3         |
| 34 | Lyapunov Function Partial Differential Equations for Stability Analysis of a Class of Chemical<br>Reaction Networks. IFAC-PapersOnLine, 2020, 53, 11509-11514.                         | 0.9  | 3         |
| 35 | A Data-based Compact High-order Volterra Model for Complex Blast Furnace System. IEEE Transactions on Industrial Informatics, 2021, , 1-1.                                             | 11.3 | 3         |
| 36 | Thermodynamic Potentials from Stationary Probabilities. IFAC-PapersOnLine, 2019, 52, 96-102.                                                                                           | 0.9  | 2         |

Сниалнои Сао

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Adaptation Mechanisms in Phosphorylation Cycles By Allosteric Binding and Gene Autoregulation.<br>IEEE Transactions on Automatic Control, 2020, 65, 3457-3470.                    | 5.7 | 2         |
| 38 | The Fractal Multiscale Trend Decomposition of Silicon Content in Blast Furnace Hot Metal. ISIJ<br>International, 2011, 51, 588-592.                                               | 1.4 | 2         |
| 39 | Multi-scale entropy analysis on the complexity of blast furnace ironmaking process. , 2010, , .                                                                                   |     | 1         |
| 40 | Isolation of Overtemperature Fault in an Industrial Boiler Using Tree-Structured Sparsity-Based Reconstruction. Industrial & Engineering Chemistry Research, 2022, 61, 6575-6586. | 3.7 | 1         |
| 41 | CHAOTIC FEATURE OF MARTIN PROCESS IMPOSED ON THE COSINE FUNCTION. Fractals, 2009, 17, 191-195.                                                                                    | 3.7 | 0         |
| 42 | A Graphic Formulation of Nonisothermal Chemical Reaction Systems and the Analysis of Detailed Balanced Networks. SIAM Journal on Applied Dynamical Systems, 2020, 19, 2594-2627.  | 1.6 | 0         |