
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1930638/publications.pdf Version: 2024-02-01

HALFENC CAO

#	Article	IF	CITATIONS
1	Chain-growth click copolymerization for the synthesis of branched copolymers with tunable branching densities. Polymer Chemistry, 2022, 13, 891-897.	1.9	12
2	In Situ Photocatalyzed Polymerization to Stabilize Perovskite Nanocrystals in Protic Solvents. ACS Energy Letters, 2022, 7, 610-616.	8.8	33
3	Synthesis of Linear Polymers in High Molecular Weights via Reaction-Enhanced Reactivity of Intermediates Using Friedel–Crafts Polycondensation. ACS Omega, 2021, 6, 4527-4533.	1.6	15
4	Combining Hyperbranched and Linear Structures in Solid Polymer Electrolytes to Enhance Mechanical Properties and Room-Temperature Ion Transport. Frontiers in Chemistry, 2021, 9, 563864.	1.8	4
5	Magnetic Nanoplatforms for Covalent Protein Immobilization Based on Spy Chemistry. ACS Applied Materials & Interfaces, 2021, 13, 44147-44156.	4.0	15
6	Chainâ€growth polymerization of azide–alkyne difunctional monomer: Synthesis of star polymer with linear polytriazole arms from a core. Journal of Polymer Science, 2020, 58, 84-90.	2.0	6
7	Synthesis and direct assembly of linear–dendritic copolymers <i>via</i> CuAAC click polymerization-induced self-assembly (CPISA). Polymer Chemistry, 2020, 11, 936-943.	1.9	21
8	Recyclable Palladium-Loaded Hyperbranched Polytriazoles as Efficient Polymer Catalysts for Heck Reaction. ACS Applied Polymer Materials, 2020, 2, 677-684.	2.0	11
9	Recent advances on synthesis and biomaterials applications of hyperbranched polymers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1640.	3.3	23
10	Synthesis of multisegmented block copolymer by Friedel–Crafts hydroxyalkylation polymerization. Polymer Chemistry, 2020, 11, 2542-2549.	1.9	9
11	Synthesis of Hyperbranched Polymers via Metalâ€Free ATRP in Solution and Microemulsion. Macromolecular Chemistry and Physics, 2020, 221, 2000008.	1.1	15
12	Supramolecular Loading of a Broad Spectrum of Molecular Guests In Hyperbranched Polytriazole Nanoparticles with Cores Containing Multiple Functional Groups. Biomacromolecules, 2020, 21, 2165-2175.	2.6	1
13	Chainâ€growth polymerization of azide–alkyne difunctional monomer: Synthesis of star polymer with linear polytriazole arms from a core. Journal of Polymer Science, 2020, 58, 84-90.	2.0	Ο
14	Synthesize Hyperbranched Polymers Carrying Two Reactive Handles via CuAAC Reaction and Thiol–Ene Chemistry. Macromolecular Chemistry and Physics, 2019, 220, 1900221.	1.1	4
15	A personal journey on using polymerization in aqueous dispersed media to synthesize polymers with branched structures. Chinese Chemical Letters, 2019, 30, 1996-2002.	4.8	4
16	Synthesis of Highly Branched Copolymers in Microemulsion. Macromolecular Chemistry and Physics, 2019, 220, 1800546.	1.1	5
17	Tandem Functionalization in a Highly Branched Polymer with Layered Structure. Chemistry - A European Journal, 2018, 24, 5974-5981.	1.7	19
18	Highly Branched Polymers with Layered Structures that Mimic Lightâ€Harvesting Processes. Angewandte Chemie, 2018, 130, 525-529.	1.6	17

#	Article	IF	CITATIONS
19	Highly Branched Polymers with Layered Structures that Mimic Lightâ€Harvesting Processes. Angewandte Chemie - International Edition, 2018, 57, 516-520.	7.2	43
20	Recent Progress on Grafting-onto Synthesis of Molecular Brushes by Reversible Deactivation Radical Polymerization and CuAAC Coupling Reaction. ACS Symposium Series, 2018, , 263-280.	0.5	3
21	Ligand effect in the synthesis of hyperbranched polymers via copperâ€catalyzed azideâ€alkyne cycloaddition polymerization (CuAACP). Journal of Polymer Science Part A, 2018, 56, 2238-2244.	2.5	11
22	Tunable Fluorescence from a Responsive Hyperbranched Polymer with Spatially Arranged Fluorophore Arrays. Chemistry - an Asian Journal, 2018, 13, 3723-3728.	1.7	7
23	Friedel–Crafts A ₂ + B ₄ Polycondensation toward Regioselective Linear Polymer with Rigid Triphenylmethane Backbone and Its Property as Gas Separation Membrane. Macromolecules, 2018, 51, 6580-6586.	2.2	24
24	Cationic Hyperbranched Polymers with Biocompatible Shells for siRNA Delivery. Biomacromolecules, 2018, 19, 3754-3765.	2.6	25
25	Template synthesis of gold nanoparticles from hyperstar polymers and exploration of their catalytic function for hydrogen evolution reaction. Polymer, 2018, 153, 331-337.	1.8	9
26	Shape and Mechanical Control of Poly(ethylene oxide) Based Polymersome with Polyoxometalates via Hydrogen Bond. Journal of Physical Chemistry B, 2017, 121, 1723-1730.	1.2	6
27	Preparation of hyperstar polymers with encapsulated Au ₂₅ (SR) ₁₈ clusters as recyclable catalysts for nitrophenol reduction. Nanoscale, 2017, 9, 3629-3636.	2.8	23
28	Development of Excipient-Free Freeze-Dryable Unimolecular Hyperstar Polymers for Efficient siRNA Silencing. ACS Macro Letters, 2017, 6, 700-704.	2.3	23
29	Produce Molecular Brushes with Ultrahigh Grafting Density Using Accelerated CuAAC Grafting-Onto Strategy. Macromolecules, 2017, 50, 215-222.	2.2	46
30	A Novel Chain-Growth CuAAC Polymerization: One-pot Synthesis of Dendritic Hyperbranched Polymers with Well-Defined Structures. Synlett, 2017, 28, 391-396.	1.0	10
31	Copolymer Nanofilters with Charge-Patterned Domains for Enhanced Electrolyte Transport. Chemistry of Materials, 2017, 29, 762-772.	3.2	15
32	Recent Progress on Hyperbranched Polymers Synthesized via Radical-Based Self-Condensing Vinyl Polymerization. Polymers, 2017, 9, 188.	2.0	59
33	Synthesis of Hyperbranched Polymers with High Molecular Weight in the Homopolymerization of Polymerizable Trithiocarbonate Transfer Agent without Thermal Initiator. Macromolecules, 2016, 49, 6471-6479.	2.2	13
34	Synthesis of acid-degradable hyperbranched polymers by chain-growth CuAAC polymerization of an AB ₃ monomer. Polymer Chemistry, 2016, 7, 5512-5517.	1.9	33
35	Effect of Monomer Structure on the CuAAC Polymerization To Produce Hyperbranched Polymers. Macromolecules, 2016, 49, 5342-5349.	2.2	34
36	Preparation of water-soluble hyperbranched polymers with tunable thermosensitivity using chain-growth CuAAC copolymerization. Polymer Chemistry, 2016, 7, 7500-7505.	1.9	14

HAIFENG GAO

#	Article	IF	CITATIONS
37	Investigate the Glass Transition Temperature of Hyperbranched Copolymers with Segmented Monomer Sequence. Macromolecules, 2016, 49, 4416-4422.	2.2	35
38	Design a Highly Reactive Trifunctional Core Molecule To Obtain Hyperbranched Polymers with over a Million Molecular Weight in One-Pot Click Polymerization. Macromolecules, 2016, 49, 760-766.	2.2	73
39	The use of azide–alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers. Nanoscale, 2016, 8, 4864-4881.	2.8	88
40	Probing the Inhomogeneous Charge Distribution on Annealed Polyelectrolyte Star Polymers in Dilute Aqueous Solutions. ACS Macro Letters, 2016, 5, 402-406.	2.3	18
41	Comparison of Loading Efficiency between Hyperbranched Polymers and Crossâ€Linked Nanogels at Various Branching Densities. Macromolecular Rapid Communications, 2015, 36, 2076-2082.	2.0	17
42	Chainâ€Growth Click Polymerization of AB ₂ Monomers for the Formation of Hyperbranched Polymers with Low Polydispersities in a Oneâ€Pot Process. Angewandte Chemie - International Edition, 2015, 54, 7631-7635.	7.2	138
43	Construction of semi-fluorinated amphiphilic graft copolymer bearing a poly(2-methyl-1,4-bistrifluorovinyloxybenzene) backbone and poly(ethylene glycol) side chains via the grafting-onto strategy. RSC Advances, 2015, 5, 39668-39676.	1.7	10
44	Innentitelbild: Chain-Growth Click Polymerization of AB2Monomers for the Formation of Hyperbranched Polymers with Low Polydispersities in a One-Pot Process (Angew. Chem. 26/2015). Angewandte Chemie, 2015, 127, 7562-7562.	1.6	1
45	Developing recyclable pH-responsive magnetic nanoparticles for oil–water separation. Polymer, 2015, 72, 361-367.	1.8	92
46	Core-Double-Shell Fe ₃ O ₄ @Carbon@Poly(In ^{III} -carboxylate) Microspheres: Cycloaddition of CO ₂ and Epoxides on Coordination Polymer Shells Constituted by Imidazolium-Derived Al ^{III} –Salen Bifunctional Catalysts. ACS Applied Materials & Interfaces, 2015, 7, 4969-4978.	4.0	35
47	Exciton Structure and Dynamics in Solution Aggregates of a Low-Bandgap Copolymer. Journal of Physical Chemistry B, 2015, 119, 7666-7672.	1.2	17
48	Amineâ€Functionalized Porous Polymer Network for Highly Selective Absorption of CO ₂ Over N ₂ . Macromolecular Chemistry and Physics, 2015, 216, 489-494.	1.1	15
49	Recent Progress on Synthesis of Hyperbranched Polymers with Controlled Molecular Weight Distribution. ACS Symposium Series, 2015, , 135-147.	0.5	7
50	Exploring Self-Condensing Vinyl Polymerization of Inimers in Microemulsion To Regulate the Structures of Hyperbranched Polymers. Macromolecules, 2015, 48, 2118-2126.	2.2	72
51	Combinatorial therapy for triple negative breast cancer using hyperstar polymer-based nanoparticles. Chemical Communications, 2015, 51, 16710-16713.	2.2	24
52	One-pot synthesis of hyperstar polymers via sequential ATRP of inimers and functional monomers in aqueous dispersed media. Polymer Chemistry, 2015, 6, 6739-6745.	1.9	25
53	Synthesis of degradable molecular brushes via a combination of ringâ€opening polymerization and click chemistry. Journal of Polymer Science Part A, 2015, 53, 239-248.	2.5	36
54	Designing Hydrogels by ATRP. Series in Bioengineering, 2015, , 69-105.	0.3	5

#	Article	IF	CITATIONS
55	Thermal conductivity of organic bulk heterojunction solar cells: an unusual binary mixing effect. Physical Chemistry Chemical Physics, 2014, 16, 26359-26364.	1.3	9
56	Facile Production of Polypyrrole Nanofibers Using a Freezeâ€Drying Method. Macromolecular Chemistry and Physics, 2014, 215, 669-674.	1.1	10
57	Developing Porous Honeycomb Films Using Miktoarm Star Copolymers and Exploring Their Application in Particle Separation. Macromolecular Rapid Communications, 2014, 35, 221-227.	2.0	28
58	Mixed Mosaic Membranes Prepared by Layer-by-Layer Assembly for Ionic Separations. ACS Nano, 2014, 8, 12338-12345.	7.3	56
59	Development of a redox/pH dual stimuli-responsive MSP@P(MAA-Cy) drug delivery system for programmed release of anticancer drugs in tumour cells. Journal of Materials Chemistry B, 2014, 2, 5187-5194.	2.9	29
60	Tuning the thermal conductivity of solar cell polymers through side chain engineering. Physical Chemistry Chemical Physics, 2014, 16, 7764-7771.	1.3	44
61	Relationship between Interchain Interaction, Exciton Delocalization, and Charge Separation in Low-Bandgap Copolymer Blends. Journal of the American Chemical Society, 2014, 136, 10024-10032.	6.6	88
62	Hierarchically porous materials via assembly of nitrogen-rich polymer nanoparticles for efficient and selective CO2 capture. Journal of Materials Chemistry A, 2013, 1, 14862.	5.2	58
63	Molecular dynamics in PBA/PEO miktoarm star copolymers. Polymer, 2013, 54, 3341-3349.	1.8	5
64	New Method To Access Hyperbranched Polymers with Uniform Structure via One-Pot Polymerization of Inimer in Microemulsion. Journal of the American Chemical Society, 2012, 134, 15680-15683.	6.6	107
65	Morphology and NMR Self-Diffusion in PBA/PEO Miktoarm Star Copolymers. Zeitschrift Fur Physikalische Chemie, 2012, 226, 1271-1292.	1.4	3
66	Development of Star Polymers as Unimolecular Containers for Nanomaterials. Macromolecular Rapid Communications, 2012, 33, 722-734.	2.0	156
67	pH-Responsive Fluorescent Molecular Bottlebrushes Prepared by Atom Transfer Radical Polymerization. Macromolecules, 2011, 44, 5905-5910.	2.2	61
68	Structural studies of poly(butyl acrylate) – poly(ethylene oxide) miktoarm star polymers. Polymer, 2011, 52, 5513-5520.	1.8	4
69	Melt rheology of star polymers with large number of small arms, prepared by crosslinking poly(n-butyl acrylate) macromonomers via ATRP. European Polymer Journal, 2011, 47, 746-751.	2.6	30
70	Modular Approaches to Star and Miktoarm Star Polymers by ATRP of Cross‣inkers. Macromolecular Symposia, 2010, 291-292, 12-16.	0.4	20
71	Effect of crosslinker multiplicity on the gel point in ATRP. Journal of Polymer Science Part A, 2010, 48, 2016-2023.	2.5	23
72	Easy Access to a Family of Polymer Catalysts from Modular Star Polymers. Journal of the American Chemical Society, 2010, 132, 2570-2572.	6.6	104

#	Article	IF	CITATIONS
73	Site Isolation of Emitters within Cross-Linked Polymer Nanoparticles for White Electroluminescence. Nano Letters, 2010, 10, 1440-1444.	4.5	39
74	Rapid Cellular Internalization of Multifunctional Star Polymers Prepared by Atom Transfer Radical Polymerization. Biomacromolecules, 2010, 11, 2199-2203.	2.6	45
75	Gelation in Atom Transfer Radical Copolymerization with a Divinyl Cross-linker. ACS Symposium Series, 2009, , 203-213.	0.5	2
76	High‥ield Synthesis of Uniform Star Polymers—Is Controlled Radical Polymerization Always Needed?. Chemistry - A European Journal, 2009, 15, 6107-6111.	1.7	9
77	Methacryloyl and/or Hydroxyl Endâ€Functional Star Polymers Synthesized by ATRP Using the Armâ€First Method. Macromolecular Chemistry and Physics, 2009, 210, 421-430.	1.1	20
78	Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. Progress in Polymer Science, 2009, 34, 317-350.	11.8	741
79	One-Pot Synthesis of Hairy Nanoparticles by Emulsion ATRP. Macromolecules, 2009, 42, 1597-1603.	2.2	105
80	Influence of Initiation Efficiency and Polydispersity of Primary Chains on Gelation during Atom Transfer Radical Copolymerization of Monomer and Cross-Linker. Macromolecules, 2009, 42, 927-932.	2.2	59
81	Gelation in Living Copolymerization of Monomer and Divinyl Cross-Linker: Comparison of ATRP Experiments with Monte Carlo Simulations. Macromolecules, 2009, 42, 5925-5932.	2.2	88
82	Gelation in ATRP Using Structurally Different Branching Reagents: Comparison of Inimer, Divinyl and Trivinyl Cross-Linkers. Macromolecules, 2009, 42, 8039-8043.	2.2	24
83	Cell-Adhesive Star Polymers Prepared by ATRP. Biomacromolecules, 2009, 10, 1795-1803.	2.6	42
84	All-Star Polymer Multilayers as pH-Responsive Nanofilms. Macromolecules, 2009, 42, 368-375.	2.2	93
85	Biotinâ€, Pyreneâ€, and GRGDSâ€Functionalized Polymers and Nanogels via ATRP and End Group Modification. Macromolecular Chemistry and Physics, 2008, 209, 2179-2193.	1.1	60
86	Synthesis of Low-Polydispersity Miktoarm Star Copolymers via a Simple "Arm-First―Method: Macromonomers as Arm Precursors. Macromolecules, 2008, 41, 4250-4257.	2.2	86
87	Synthesis of Polyacrylate Networks by ATRP: Parameters Influencing Experimental Gel Points. Macromolecules, 2008, 41, 2335-2340.	2.2	124
88	Effect of Cross-Linker Reactivity on Experimental Gel Points during ATRcP of Monomer and Cross-Linker. Macromolecules, 2008, 41, 7843-7849.	2.2	75
89	One-Pot Synthesis of Robust Core/Shell Gold Nanoparticles. Journal of the American Chemical Society, 2008, 130, 12852-12853.	6.6	138
90	Synthesis of Star Polymers by A New "Core-First―Method:  Sequential Polymerization of Cross-Linker and Monomer. Macromolecules, 2008, 41, 1118-1125.	2.2	131

#	Article	IF	CITATIONS
91	Arm-First Method As a Simple and General Method for Synthesis of Miktoarm Star Copolymers. Journal of the American Chemical Society, 2007, 129, 11828-11834.	6.6	176
92	Low-Polydispersity Star Polymers with Core Functionality by Cross-Linking Macromonomers Using Functional ATRP Initiators. Macromolecules, 2007, 40, 399-401.	2.2	87
93	Synthesis of Molecular Brushes by "Grafting onto―Method:  Combination of ATRP and Click Reactions. Journal of the American Chemical Society, 2007, 129, 6633-6639.	6.6	559
94	Synthesis of 3â€Arm Star Block Copolymers by Combination of "Coreâ€First―and "Couplingâ€Onto―M Using ATRP and Click Reactions. Macromolecular Chemistry and Physics, 2007, 208, 1370-1378.	lethods 1.1	84
95	Determination of Gel Point during Atom Transfer Radical Copolymerization with Cross-Linker. Macromolecules, 2007, 40, 7763-7770.	2.2	158
96	Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP. Macromolecules, 2007, 40, 1789-1791.	2.2	351
97	Inverse Miniemulsion ATRP:Â A New Method for Synthesis and Functionalization of Well-Defined Water-Soluble/Cross-Linked Polymeric Particles. Journal of the American Chemical Society, 2006, 128, 5578-5584.	6.6	313
98	Synthesis of Star Polymers by a Combination of ATRP and the "Click―Coupling Method. Macromolecules, 2006, 39, 4960-4965.	2.2	435
99	Structural Control in ATRP Synthesis of Star Polymers Using the Arm-First Method. Macromolecules, 2006, 39, 3154-3160.	2.2	161
100	Development of an ab Initio Emulsion Atom Transfer Radical Polymerization:Â From Microemulsion to Emulsion. Journal of the American Chemical Society, 2006, 128, 10521-10526.	6.6	167
101	Synthesis of Miktoarm Star Polymers via ATRP Using the "Inâ^'Out―Method:  Determination of Initiation Efficiency of Star Macroinitiators. Macromolecules, 2006, 39, 7216-7223.	2.2	87
102	Low Polydispersity Star Polymers via Cross-Linking Macromonomers by ATRP. Journal of the American Chemical Society, 2006, 128, 15111-15113.	6.6	164
103	Click Functionalization of Well-Defined Copolymers Prepared by Atom Transfer Radical Polymerization. ACS Symposium Series, 2006, , 140-152.	0.5	12
104	Functional Degradable Polymeric Materials Prepared by Atom Transfer Radical Polymerization. ACS Symposium Series, 2006, , 184-200.	0.5	17
105	Characterization of Linear and 3-Arm Star Block Copolymers by Liquid Chromatography at Critical Conditions. Macromolecular Chemistry and Physics, 2006, 207, 1709-1717.	1.1	40
106	Thermosensitive poly(N-isopropylacrylamide) nanocapsules with controlled permeability. Polymer, 2005, 46, 1087-1093.	1.8	79
107	Gradient Polymer Elution Chromatographic Analysis of α,ω-Dihydroxypolystyrene Synthesized via ATRP and Click Chemistry. Macromolecules, 2005, 38, 8979-8982.	2.2	146
108	Synthesis of Degradable Miktoarm Star Copolymers via Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 5995-6004.	2.2	174

HAIFENG GAO

#	Article	IF	CITATIONS
109	Preparation of Homopolymers and Block Copolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer (AGET). Journal of the American Chemical Society, 2005, 127, 3825-3830.	6.6	460
110	Characterization of α,ï‰-dihydroxypolystyrene by gradient polymer elution chromatography and two-dimensional liquid chromatography. Designed Monomers and Polymers, 2005, 8, 533-546.	0.7	21
111	Preparation of a Waterâ€Soluble Fluorescent Polymer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 357-371.	1.2	12
112	Preparation of a novel polymeric fluorescent nanoparticle. Colloid and Polymer Science, 2002, 280, 653-660.	1.0	38