Xuenian Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1930487/publications.pdf

Version: 2024-02-01

105	2,433	26	43
papers	citations	h-index	g-index
106	106	106	1856 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Platinum thiolate complexes supported by PBP and POCOP pincer ligands as efficient catalysts for the hydrosilylation of carbonyl compounds. Dalton Transactions, 2022, 51, 2304-2312.	3.3	13
2	Catalyst-free reductions of nitriles to amino-boranes using sodium amidoborane and lithium borohydride. Organic Chemistry Frontiers, 2022, 9, 1536-1540.	4.5	3
3	Synthesis of K[B ₃ H ₇ NH ₂ BH ₂ NH ₂ B ₃ H _{7<td>sub>]</td><td>1</td>}	sub>]	1
4	Catalysts Based on the Câ^'Hâ<â<â <m .<="" 2022,="" 7,="" and="" application="" bis(pyrazolyl)borate="" bonds.="" carbene="" catalytic="" characterization="" chemistryselect,="" complexes="" cu(i)="" heteroatom="" hydrogen="" in="" insertion="" interaction:="" into="" of="" synthesis,="" td="" weak=""><td>າ 1.5</td><td>0</td></m>	າ 1.5	0
5	Practical Synthesis of B(9)-Halogenated Carboranes with <i>N</i> Haloamides in Hexafluoroisopropanol. Inorganic Chemistry, 2022, 61, 5326-5334.	4.0	20
6	KB ₃ H ₈ ·NH ₃ B ₃ H ₇ Complex as a Potential Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Solid-State Electrolyte with Excellent Stability against Metal. ACS Applied Materials & Solid-State Electrolyte With Excellent Stability against Metal. ACS Applied Materials & Solid-State Electrolyte With Excellent Stability against Metal. ACS Applied Materials & Solid-State Electrolyte With Excellent Stability against Metal. ACS Applied Materials & Solid-State Electrolyte With Excellent Stability against Metal. ACS Applied Materials & Solid-State Electrolyte With Excellent Stability against Metal. ACS Applied Materials & Solid-State Electrolyte With Excellent Stability against Metal. ACS Applied Materials & Solid-State Electrolyte With Excellent Stability against Metal. ACS Applied M	8.0	12
7	Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C–H oxidations. Chinese Chemical Letters, 2022, 33, 4395-4399.	9.0	25
8	Palladium-Catalyzed Regioselective B(9)-Amination of $\langle i \rangle o \langle i \rangle$ -Carboranes and $\langle i \rangle m \langle i \rangle$ -Carboranes in HFIP with Broad Nitrogen Sources. Journal of the American Chemical Society, 2022, 144, 8371-8378.	13.7	40
9	Application of bis(phosphinite) pincer nickel complexes to the catalytic hydrosilylation of aldehydes. Inorganica Chimica Acta, 2021, 515, 120088.	2.4	15
10	Non-noble metal single-atom catalyst of Co1/MXene (Mo2CS2) for CO oxidation. Science China Materials, 2021, 64, 651-663.	6.3	44
11	Visible light-mediated synthesis of amides from carboxylic acids and amine-boranes. Green Chemistry, 2021, 23, 3595-3599.	9.0	27
12	Halogenated sodium/lithium monocarba- <i>closo</i> -decaborates: syntheses, characterization, and solid-state ionic conductivity. Materials Chemistry Frontiers, 2021, 5, 8037-8046.	5.9	4
13	Adsorptive Mechanism of Chromium Adsorption on Siltstone–Nanomagnetite–Biochar Composite. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1608-1620.	3.7	17
14	Efficient Solvent-Free Hydrosilylation of Aldehydes and Ketones Catalyzed by Fe2(CO)9/C6H4-o-(NCH2PPh2)2BH. Catalysis Letters, 2021, 151, 3509.	2.6	2
15	Hydroboration Reaction and Mechanism of Carboxylic Acids using NaNH ₂ (BH ₃) ₂ , a Hydroboration Reagent with Reducing Capability between NaBH ₄ and LiAlH ₄ . Journal of Organic Chemistry, 2021, 86, 5305-5316.	3.2	22
16	Facile Synthetic Method of Na[BH ₃ (NH ₂ BH ₂) ₂ H] Based on the Reactions of Sodium Amidoborane (NaNH ₂ BH ₃) with NiBr ₂ or CoCl ₂ . Inorganic Chemistry, 2021, 60, 7101-7107.	4.0	9
17	Iodine-Substituted Lithium/Sodium <i>closo</i> -Decaborates: Syntheses, Characterization, and Solid-State Ionic Conductivity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17554-17564.	8.0	26

Understanding the Electronic Structure and Stability of <scp>B<sub><i>n</i></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></

#	Article	IF	Citations
19	Theoretical study on hydrogen storage of pristine bilayer hexagonal boron nitride. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	6
20	Synthesis, structure and property of boron-based metal–organic materials. Coordination Chemistry Reviews, 2021, 435, 213783.	18.8	29
21	High Protonâ€Conductivity in Covalently Linked Polyoxometalateâ€Organoboronic Acidâ€Polymers. Angewandte Chemie - International Edition, 2021, 60, 16953-16957.	13.8	50
22	High Protonâ€Conductivity in Covalently Linked Polyoxometalateâ€Organoboronic Acidâ€Polymers. Angewandte Chemie, 2021, 133, 17090-17094.	2.0	5
23	Synthesis and Dehydrogenation of Organic Salts of a Fiveâ€Membered B/N Anionic Chain, a Novel Ionic Liquid. Chemistry - an Asian Journal, 2021, 16, 2475-2480.	3.3	5
24	The Stability of Diphosphinoâ€Boryl PBP Pincer Backbone: PBP to POP Ligand Hydrolysis. Chemistry - an Asian Journal, 2021, 16, 2489-2494.	3.3	11
25	A safe and efficient synthetic method for alkali metal octahydrotriborates, unravelling a general mechanism for constructing the delta B3 unit of polyhedral boranes. Dalton Transactions, 2021, 50, 13676-13679.	3.3	13
26	A general method for the synthesis of covalent and ionic amine borane complexes containing trinitromethyl fragments. RSC Advances, 2021, 11, 9740-9745.	3.6	1
27	Multinuclear transition metal-containing polyoxometalates constructed from Nb/W mixed-addendum precursors: synthesis, structures and catalytic performance. Dalton Transactions, 2021, 50, 8690-8695.	3.3	4
28	Few-Layered Metal–Organic Framework Nanosheets as Catalysts for the Synthesis of 2,3-Dihydroquinazolinone and Propargylamines. ACS Applied Nano Materials, 2021, 4, 12108-12118.	5.0	3
29	Improved and Scalable Synthesis of [Et _{4/sub>8/sub>9. Organometallics, 2021, 40, 3480-3485.}	2.3	4
30	KB ₃ H ₈ : an environment-friendly reagent for the selective reduction of aldehydes and ketones to alcohols. Chemical Communications, 2021, 57, 12776-12779.	4.1	5
31	An Effective Osmium Precatalyst for Practical Synthesis of Diarylketones: Preparation, Reactivity, and Catalytic Application of [OsH-ci>cis-(CO) ₂ -ci>mer-{κ ³ -ci>P,ci>B,ci>P,ci>P,e²²-B(NCH ₂ -ci>P-ci>B-ci>P </td <td>sub²;PPh<</td> <td>sub⁵>2</td>	sub ² ;PPh<	sub ⁵ >2
32	Improved Methods for the Synthesis of KB3H8, NH3B3H7, and N-Alkyl Analogues of NH3B3H7. Inorganic Chemistry, 2021, 60, 18466-18472.	4.0	6
33	Efficient synthesis of primary and secondary amides via reacting esters with alkali metal amidoboranes. Nature Communications, 2021, 12, 5964.	12.8	30
34	Which Type of Pincer Complex Is Thermodynamically More Stable? Understanding the Structures and Relative Bond Strengths of Group 10 Metal Complexes Supported by Benzene-Based PYCYP Pincer Ligands. Inorganic Chemistry, 2021, 60, 18924-18937.	4.0	10
35	Syntheses of Bromo- <i>N</i> -heterocycles through Dibromohydantoin-Promoted Tandem C–H Amination/Bromination. Journal of Organic Chemistry, 2020, 85, 2918-2926.	3.2	17
36	Tuning Oxidation Degrees of Low-Crystallinity Porous Ni–Co–B–O/C Nanocomposites for High-Performance Hybrid Supercapacitors. Energy & Energy & 16893-16902.	5.1	6

#	Article	IF	CITATIONS
37	Syntheses and crystal structures of lutetium(III) and dysprosium(III) coordination polymers with 2,5-dihydroxybenzene-1,4-dicarboxylate anion: Magnetic and photoluminescent properties of the dysprosium complex. Polyhedron, 2020, 189, 114732.	2.2	2
38	Facile Synthesis of \hat{I}^2 -Bromostyrenes by Direct Bromination of Styrenes with N-Bromosuccinimide and Sodium Persulfate. Synlett, 2020, 31, 1523-1526.	1.8	4
39	Synthesis of Phenanthridines through Iodine-Supported Intramolecular C–H Amination and Oxidation under Visible Light. Journal of Organic Chemistry, 2020, 85, 12187-12198.	3.2	17
40	A Structure Comparison of Ni(II) Complexes Supported by PNCNP and POCOP Pincer Ligands. ChemistrySelect, 2020, 5, 5205-5209.	1.5	3
41	Organoborâ€Funktionalisierung ermöglicht die hierarchische Aggregation gigantischer Polyoxometallatâ€Nanokapseln. Angewandte Chemie, 2020, 132, 8615-8618.	2.0	6
42	Catalytic effect of water on the HO3 + NO formations from the HNO + O3reaction in tropospho conditions. Molecular Simulation, 2020, 46, 497-505.	eric 2.0	1
43	Organoboronâ€Functionalization Enables the Hierarchical Assembly of Giant Polyoxometalate Nanocapsules. Angewandte Chemie - International Edition, 2020, 59, 8537-8540.	13.8	37
44	Chemical Syntheses of Two-Dimensional Boron Materials. CheM, 2020, 6, 324-326.	11.7	11
45	Synthesis, Crystal Structure, and Nonlinear Optical Properties of Zn(II) Complex with 4,4',4''-Tri-tert-Butyl-2,2':6',2''-Terpyridine: A Dual Exploration. Russian Journal of Inorganic Chemistry, 2020, 65, 368-377.	1.3	3
46	Hydrosilylation of Aldehydes and Ketones Catalysed by Bis(phosphinite) Pincer Platinum Hydride Complexes. Advanced Synthesis and Catalysis, 2020, 362, 2709-2715.	4.3	22
47	Synthesis, crystal structures and, magnetic and photoluminescence properties of lanthanide-based metal–organic frameworks constructed with 2,5-dihydroxybenzene-1,4-dicarboxylic acid. RSC Advances, 2020, 10, 12841-12850.	3.6	6
48	B–N Cleavage in (9â€BBN)bis(pyrazolyl)borate Ni ^{II} Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 3724-3730.	2.0	3
49	Synthesis and characterization of bis(pyrazolyl)borate Ni(<scp>ii</scp>) complexes: ligand rearrangement and transformation. Dalton Transactions, 2019, 48, 13242-13247.	3.3	2
50	Aggregation-Induced Fluorescence of Carbazole and o-Carborane Based Organic Fluorophore. Frontiers in Chemistry, 2019, 7, 768.	3.6	13
51	A Giant Mo/Ta/W Ternary Mixed-Addenda Polyoxometalate with Efficient Photocatalytic Activity for Primary Amine Coupling. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43287-43293.	8.0	42
52	The stability of group 10 metal POCOP pincer complexes: decomposition/reconstruction pathways of the pincer backbone. Dalton Transactions, 2019, 48, 13760-13768.	3.3	14
53	Unravelling a general mechanism of converting ionic B/N complexes into neutral B/N analogues of alkanes: H ^{Î'+} â√H ^{Î'ã€"} dihydrogen bonding assisted dehydrogenation. Chemical Communications, 2019, 55, 12239-12242.	4.1	20
54	Facile Synthesis of Unsolvated Alkali Metal Octahydrotriborate Salts MB 3 H 8 (M=K, Rb, and Cs), Mechanisms of Formation, and the Crystal Structure of KB 3 H 8. Angewandte Chemie, 2019, 131, 2746-2750.	2.0	13

#	Article	IF	CITATIONS
55	Facile Synthesis of Unsolvated Alkali Metal Octahydrotriborate Salts MB ₃ H ₈ (M=K, Rb, and Cs), Mechanisms of Formation, and the Crystal Structure of KB ₃ H ₈ . Angewandte Chemie - International Edition, 2019, 58, 2720-2724.	13.8	39
56	Reactions of POCOP pincer palladium benzylthiolate complexes withÂBH3·THF: Isolation and characterization of unstable POCOP-Pd(η1-HBH3) complexes. Journal of Organometallic Chemistry, 2019, 882, 50-57.	1.8	15
57	Syntheses and Structures of Group 10 Metal POCOP Pincer Complexes Bearing A Mercaptoâ€ <i>o–⟨i⟩carborane Auxiliary Ligand. ChemistrySelect, 2019, 4, 1292-1297.</i>	1.5	6
58	Probing the structures and bonding of size-selected boron and doped-boron clusters. Chemical Society Reviews, 2019, 48, 3550-3591.	38.1	169
59	Potassium octahydridotriborate: diverse polymorphism in a potential hydrogen storage material and potassium ion conductor. Dalton Transactions, 2019, 48, 8872-8881.	3.3	34
60	Synthesis, Thermal, Structural Analyses, and Photoluminescent Properties of a New Family of Malonate-Containing Lanthanide(III) Coordination Polymers. Frontiers in Chemistry, 2019, 7, 260.	3.6	10
61	The interconversion between THF·B ₃ H ₇ and B ₃ H ₈ ^{â^'} : an efficient synthetic method for MB ₃ H ₈ (M = Li and Na). Dalton Transactions, 2019, 48, 5140-5143.	3.3	15
62	Boronic acid derivatized lanthanide–polyoxometalates with novel B–OH–Ln and B–O–Nb bridges. Chemical Communications, 2019, 55, 2525-2528.	4.1	12
63	Controllable syntheses of B/N anionic aminoborane chain complexes by the reaction of NH ₃ BH ₃ with NaH and the mechanistic study. Dalton Transactions, 2019, 48, 14984-14988.	3 . 3	17
64	Mechanisms of the Reactions of Bâ€Substituted Amine Boranes with THF·BH ₃ . European Journal of Inorganic Chemistry, 2019, 2019, 4994-4999.	2.0	0
65	Synthesis, Crystal Structures and Photoluminescent Properties of One-Dimensional Europium(III)- and Terbium(III)-Glutarate Coordination Polymers, and Their Applications for the Sensing of Fe3+ and Nitroaromatics. Frontiers in Chemistry, 2019, 7, 728.	3 . 6	13
66	Palladium(ii) complexes supported by PBP and POCOP pincer ligands: a comparison of their structure, properties and catalytic activity. Dalton Transactions, 2019, 48, 17633-17643.	3.3	20
67	A New Perspective on Borane Chemistry: The Nucleophilicity of the Bâ°'H Bonding Pair Electrons. Angewandte Chemie - International Edition, 2019, 58, 3268-3278.	13.8	73
68	Boranchemie aus einer neuen Perspektive: Nukleophilie der Bâ€Hâ€Bindungselektronen. Angewandte Chemie, 2019, 131, 3302-3313.	2.0	16
69	One-Pot Synthesis of Iodo-Dibenzothiazines from 2-Biaryl Sulfides. Journal of Organic Chemistry, 2019, 84, 450-457.	3.2	15
70	A reaction of [2,6-(tBu2PO)2C6H3]NiSCH2Ph with BH3·THF: borane mediated C–S bond cleavage. Dalton Transactions, 2018, 47, 6018-6024.	3.3	19
71	Reactions of Amine–Boranes with Oxalic Acid: Substitution on the N or B Atom Leads to Different Spiroborate Compounds. European Journal of Inorganic Chemistry, 2018, 2018, 2659-2665.	2.0	5
72	Application of POCOP Pincer Nickel Complexes to the Catalytic Hydroboration of Carbon Dioxide. Catalysts, 2018, 8, 508.	3.5	22

#	Article	IF	CITATIONS
73	Copper oxide hollow spheres: Synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2018, 43, 20875-20881.	7.1	23
74	Synthesis of dibenzothiazines from sulfides by one-pot⟨i⟩N⟨ i⟩,⟨i⟩O⟨ i⟩-transfer and intramolecular Câ€"H amination. Green Chemistry, 2018, 20, 2953-2958.	9.0	31
75	Toward Solution Syntheses of the Tetrahedral Au ₂₀ Pyramid and Atomically Precise Gold Nanoclusters with Uncoordinated Sites. Accounts of Chemical Research, 2018, 51, 2159-2168.	15.6	68
76	Controllable Synthesis and Catalytic Performance of Nanocrystals of Rare-Earth-Polyoxometalates. Inorganic Chemistry, 2018, 57, 6624-6631.	4.0	29
77	Elucidation of the Formation Mechanisms of the Octahydrotriborate Anion (B ₃ H ₈ 3€") through the Nucleophilicity of the Bâ€"H Bond. Journal of the American Chemical Society, 2018, 140, 6718-6726.	13.7	68
78	The Reactivity of Mercapto Groups against Boron Hydrides in Pincer Ligated Nickel Mercapto Complexes. Chemistry - an Asian Journal, 2018, 13, 3231-3238.	3.3	18
79	Lanthanide derivatives of Ta/W mixed-addendum POMs as proton-conducting materials. Dalton Transactions, 2017, 46, 4157-4160.	3.3	27
80	Hydroboration of CO ₂ catalyzed by bis(phosphinite) pincer ligated nickel thiolate complexes. Dalton Transactions, 2017, 46, 4504-4509.	3.3	53
81	BrÃ,nsted and Lewis Base Behavior of Sodium Amidotrihydridoborate (NaNH ₂ BH ₃). European Journal of Inorganic Chemistry, 2017, 2017, 4541-4545.	2.0	20
82	Catalyst design based on agostic interactions: synthesis, characterization, and catalytic activity of bis(pyrazolyl)borate copper complexes. Dalton Transactions, 2016, 45, 10194-10199.	3.3	19
83	Highly efficient reduction of carbon dioxide with a borane catalyzed by bis(phosphinite) pincer ligated palladium thiolate complexes. Chemical Communications, 2016, 52, 14262-14265.	4.1	54
84	Synthesis of Ammonia Borane Nanoparticles and the Diammoniate of Diborane by Direct Combination of Diborane and Ammonia. Chemistry - A European Journal, 2016, 22, 6228-6233.	3.3	14
85	Metathesis reactivity of bis(phosphinite) pincer ligated nickel chloride, isothiocyanate and azide complexes. Journal of Organometallic Chemistry, 2016, 804, 132-141.	1.8	23
86	A sandwich-type POM containing mixed cations: synthesis, thermal performance and proton-conducting properties. Journal of Coordination Chemistry, 2016, 69, 425-432.	2.2	4
87	The continuing story of the diammoniate of diborane. Journal of Organometallic Chemistry, 2015, 798, 24-29.	1.8	26
88	Formation Mechanisms, Structure, Solution Behavior, and Reactivity of Aminodiborane. Journal of the American Chemical Society, 2015, 137, 12406-12414.	13.7	42
89	Desolvation and Dehydrogenation of Solvated Magnesium Salts of Dodecahydrododecaborate: Relationship between Structure and Thermal Decomposition. Chemistry - A European Journal, 2014, 20, 7325-7333.	3.3	13
90	Ammonia borane, past as prolog. Journal of Organometallic Chemistry, 2014, 751, 60-66.	1.8	86

#	Article	IF	CITATIONS
91	Oneâ€step hydrothermal synthesis of the Ag/AgI heterojunction with highly enhanced visibleâ€light photocatalytic performances. Micro and Nano Letters, 2014, 9, 376-381.	1.3	8
92	The Roles of Dihydrogen Bonds in Amine Borane Chemistry. Accounts of Chemical Research, 2013, 46, 2666-2675.	15.6	122
93	Synthesis, structural analysis, and thermal decomposition studies of [(NH3)2BH2]B3H8. RSC Advances, 2013, 3, 7460.	3.6	16
94	New Syntheses and Structural Characterization of NH ₃ BH ₂ Cl and (BH ₂ NH ₂) ₃ and Thermal Decomposition Behavior of NH ₃ BH ₃ BH ₂ Cl. Inorganic Chemistry, 2012, 51, 13430-13436.	4.0	38
95	Structure determination of an amorphous compound AlB4H11. Chemical Science, 2012, 3, 3183.	7.4	13
96	Largeâ€Scale and Facile Preparation of Pure Ammonia Borane through Displacement Reactions. Chemistry - A European Journal, 2012, 18, 11994-11999.	3.3	40
97	Anti and gauche conformers of an inorganic butane analogue, NH3BH2NH2BH3. Chemical Communications, 2012, 48, 7943.	4.1	26
98	A Convenient Synthesis and a NMR Study of the Diammoniate of Diborane. Chemistry - A European Journal, 2012, 18, 3490-3492.	3.3	22
99	Experimental and Computational Study of the Formation Mechanism of the Diammoniate of Diborane: The Role of Dihydrogen Bonds. Journal of the American Chemical Society, 2011, 133, 14172-14175.	13.7	79
100	Ammonium Octahydrotriborate (NH4B3H8): New Synthesis, Structure, and Hydrolytic Hydrogen Release. Inorganic Chemistry, 2011, 50, 3738-3742.	4.0	67
101	High-capacity hydrogen release through hydrolysis of NaB3H8. International Journal of Hydrogen Energy, 2011, 36, 7038-7042.	7.1	33
102	A Simple and Efficient Way to Synthesize Unsolvated Sodium Octahydrotriborate. Inorganic Chemistry, 2010, 49, 8185-8187.	4.0	41
103	Facile Synthesis of Aminodiborane and Inorganic Butane Analogue NH ₃ BH ₂ NH ₂ BH ₃ . Journal of the American Chemical Society, 2010, 132, 10658-10659.	13.7	91
104	Sodium Aminodiboranate, a New Reagent for Chemoselective Reduction of Aldehydes and Ketones to Alcohols. Synlett, 0, 32, .	1.8	4
105	Coordination mode and stability of the tetrahydroborate ligand in group $10\mathrm{metal}$ pincer complexes. Dalton Transactions, 0 , , .	3.3	3