
## Xing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1930170/publications.pdf Version: 2024-02-01



XINC CHEN

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ensemble of kernel ridge regression-based small molecule–miRNA association prediction in human<br>disease. Briefings in Bioinformatics, 2022, 23, .                                                                                                         | 6.5 | 24        |
| 2  | Comparison of [68ÂGa]Ga-FAPI-04 and [18F]-FDG for the detection of primary and metastatic lesions in patients with gastric cancer: a bicentric retrospective study. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 732-742.          | 6.4 | 55        |
| 3  | Dual-Network Collaborative Matrix Factorization for predicting small molecule-miRNA associations.<br>Briefings in Bioinformatics, 2022, 23, .                                                                                                               | 6.5 | 15        |
| 4  | A two-stage cardiac PET and late gadolinium enhancement MRI co-registration method for improved<br>assessment of non-ischemic cardiomyopathies using integrated PET/MR. European Journal of Nuclear<br>Medicine and Molecular Imaging, 2022, 49, 2199-2208. | 6.4 | 1         |
| 5  | Prediction of potential miRNA–disease associations based on stacked autoencoder. Briefings in<br>Bioinformatics, 2022, 23, .                                                                                                                                | 6.5 | 31        |
| 6  | Drug-pathway association prediction: from experimental results to computational models. Briefings in Bioinformatics, 2021, 22, .                                                                                                                            | 6.5 | 30        |
| 7  | NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion. Briefings in Bioinformatics, 2021, 22, 485-496.                                                                                                            | 6.5 | 148       |
| 8  | Microbes and complex diseases: from experimental results to computational models. Briefings in Bioinformatics, 2021, 22, .                                                                                                                                  | 6.5 | 29        |
| 9  | Deep-belief network for predicting potential miRNA-disease associations. Briefings in Bioinformatics, 2021, 22, .                                                                                                                                           | 6.5 | 101       |
| 10 | Crosstalk between hypoxia-sensing ULK1/2 and YAP-driven glycolysis fuels pancreatic ductal adenocarcinoma development. International Journal of Biological Sciences, 2021, 17, 2772-2794.                                                                   | 6.4 | 9         |
| 11 | Circular RNAs and complex diseases: from experimental results to computational models. Briefings in Bioinformatics, 2021, 22, .                                                                                                                             | 6.5 | 116       |
| 12 | Identification of miRNA–disease associations via multiple information integration with Bayesian ranking. Briefings in Bioinformatics, 2021, 22, .                                                                                                           | 6.5 | 17        |
| 13 | Predicting potential small molecule–miRNA associations based on bounded nuclear norm regularization. Briefings in Bioinformatics, 2021, 22, .                                                                                                               | 6.5 | 44        |
| 14 | Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization.<br>Genomics, 2020, 112, 809-819.                                                                                                                          | 2.9 | 32        |
| 15 | SNMFSMMA: using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association. RNA Biology, 2020, 17, 281-291.                                                                | 3.1 | 50        |
| 16 | Current Computational Models for Prediction of the Varied Interactions Related to Protein - Part 2.<br>Protein and Peptide Letters, 2020, 27, 347-347.                                                                                                      | 0.9 | 0         |
| 17 | Editorial: Bioinformatics in Microbiota. Frontiers in Microbiology, 2020, 11, 100.                                                                                                                                                                          | 3.5 | 5         |
| 18 | Computational Models in Non-Coding RNA and Human Disease. International Journal of Molecular<br>Sciences, 2020, 21, 1557.                                                                                                                                   | 4.1 | 9         |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Computational Study of Potential miRNA-Disease Association Inference Based on Ensemble Learning<br>and Kernel Ridge Regression. Frontiers in Bioengineering and Biotechnology, 2020, 8, 40.                              | 4.1 | 37        |
| 20 | Physiological Left Bundle Branch Pacing Validated by Ultra-High Density Ventricular Mapping in a<br>Swine Model. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007898.                                         | 4.8 | 5         |
| 21 | Feasibility and cardiac synchrony of permanent left bundle branch pacing through the interventricular septum. Europace, 2019, 21, 1694-1702.                                                                               | 1.7 | 173       |
| 22 | Ensemble of decision tree reveals potential miRNA-disease associations. PLoS Computational Biology, 2019, 15, e1007209.                                                                                                    | 3.2 | 166       |
| 23 | Anticancer Drug Response Prediction in Cell Lines Using Weighted Graph Regularized Matrix<br>Factorization. Molecular Therapy - Nucleic Acids, 2019, 17, 164-174.                                                          | 5.1 | 62        |
| 24 | Engineering Onâ€Demand Magnetic Core–Shell Composite Wound Dressing Matrices via<br>Electrohydrodynamic Microâ€Scale Printing. Advanced Engineering Materials, 2019, 21, 1900699.                                          | 3.5 | 16        |
| 25 | Prediction of potential miRNA-disease associations using matrix decomposition and label propagation.<br>Knowledge-Based Systems, 2019, 186, 104963.                                                                        | 7.1 | 24        |
| 26 | Prediction of Potential miRNA–Disease Associations Through a Novel Unsupervised Deep Learning<br>Framework with Variational Autoencoder. Cells, 2019, 8, 1040.                                                             | 4.1 | 47        |
| 27 | Prediction of Small Molecule–MicroRNA Associations by Sparse Learning and Heterogeneous Graph<br>Inference. Molecular Pharmaceutics, 2019, 16, 3157-3166.                                                                  | 4.6 | 38        |
| 28 | Computational Model Development of Drug-Target Interaction Prediction: A Review. Current Protein and Peptide Science, 2019, 20, 492-494.                                                                                   | 1.4 | 23        |
| 29 | Adaptive boosting-based computational model for predicting potential miRNA-disease associations.<br>Bioinformatics, 2019, 35, 4730-4738.                                                                                   | 4.1 | 125       |
| 30 | RFSMMA: A New Computational Model to Identify and Prioritize Potential Small Molecule–MiRNA<br>Associations. Journal of Chemical Information and Modeling, 2019, 59, 1668-1679.                                            | 5.4 | 45        |
| 31 | In Silico Prediction of Small Molecule-miRNA Associations Based on the HeteSim Algorithm.<br>Molecular Therapy - Nucleic Acids, 2019, 14, 274-286.                                                                         | 5.1 | 54        |
| 32 | LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Computational Biology, 2019, 15, e1006865.                                  | 3.2 | 111       |
| 33 | FGF15 Activates Hippo Signaling to Suppress Bile Acid Metabolism and Liver Tumorigenesis.<br>Developmental Cell, 2019, 48, 460-474.e9.                                                                                     | 7.0 | 68        |
| 34 | Integrating random walk and binary regression to identify novel miRNA-disease association. BMC<br>Bioinformatics, 2019, 20, 59.                                                                                            | 2.6 | 30        |
| 35 | A Unified Framework for the Prediction of Small Molecule–MicroRNA Association Based on<br>Cross-Layer Dependency Inference on Multilayered Networks. Journal of Chemical Information and<br>Modeling, 2019, 59, 5281-5293. | 5.4 | 22        |
| 36 | An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy. RNA Biology, 2019, 16, 257-269.                                                 | 3.1 | 35        |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Computational models for IncRNA function prediction and functional similarity calculation.<br>Briefings in Functional Genomics, 2019, 18, 58-82.                                                  | 2.7  | 141       |
| 38 | MicroRNAs and complex diseases: from experimental results to computational models. Briefings in Bioinformatics, 2019, 20, 515-539.                                                                | 6.5  | 507       |
| 39 | RNA methylation and diseases: experimental results, databases, Web servers and computational models. Briefings in Bioinformatics, 2019, 20, 896-917.                                              | 6.5  | 74        |
| 40 | HNMDA: heterogeneous network-based miRNA–disease association prediction. Molecular Genetics and<br>Genomics, 2018, 293, 983-995.                                                                  | 2.1  | 19        |
| 41 | ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction. RNA Biology, 2018, 15, 1-12.                                                                             | 3.1  | 58        |
| 42 | GIMDA: Graphlet interactionâ€based MiRNAâ€disease association prediction. Journal of Cellular and<br>Molecular Medicine, 2018, 22, 1548-1561.                                                     | 3.6  | 25        |
| 43 | EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction. Cell Death and Disease, 2018, 9, 3.                                                                          | 6.3  | 256       |
| 44 | MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome.<br>Nucleic Acids Research, 2018, 46, D281-D287.                                                   | 14.5 | 115       |
| 45 | BNPMDA: Bipartite Network Projection for MiRNA–Disease Association prediction. Bioinformatics, 2018, 34, 3178-3186.                                                                               | 4.1  | 307       |
| 46 | NDAMDA: Network distance analysis for Mi <scp>RNA</scp> â€disease association prediction. Journal of<br>Cellular and Molecular Medicine, 2018, 22, 2884-2895.                                     | 3.6  | 34        |
| 47 | An improved efficient rotation forest algorithm to predict the interactions among proteins. Soft Computing, 2018, 22, 3373-3381.                                                                  | 3.6  | 34        |
| 48 | DroidDet: Effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing, 2018, 272, 638-646.                                           | 5.9  | 146       |
| 49 | DRMDA: deep representationsâ€based miRNA–disease association prediction. Journal of Cellular and<br>Molecular Medicine, 2018, 22, 472-485.                                                        | 3.6  | 75        |
| 50 | A Computational-Based Method for Predicting Drug–Target Interactions by Using Stacked<br>Autoencoder Deep Neural Network. Journal of Computational Biology, 2018, 25, 361-373.                    | 1.6  | 140       |
| 51 | MDAD: A Special Resource for Microbe-Drug Associations. Frontiers in Cellular and Infection Microbiology, 2018, 8, 424.                                                                           | 3.9  | 57        |
| 52 | RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug<br>Structure and Protein Sequence Information. Current Protein and Peptide Science, 2018, 19, 445-454. | 1.4  | 94        |
| 53 | Current Computational Models for Prediction of the Varied Interactions Related to Protein - PART 1.<br>Protein and Peptide Letters, 2018, 25, 806-806.                                            | 0.9  | 0         |
| 54 | Novel Human miRNA-Disease Association Inference Based on Random Forest. Molecular Therapy -<br>Nucleic Acids, 2018, 13, 568-579.                                                                  | 5.1  | 97        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. Journal of Translational Medicine, 2018, 16, 348.                                                                      | 4.4 | 41        |
| 56 | Developing Novel Computational Techniques for Medicine and Pharmacy. Current Topics in Medicinal Chemistry, 2018, 18, 947-948.                                                                                                     | 2.1 | 2         |
| 57 | Predicting microRNA-disease associations using bipartite local models and hubness-aware regression.<br>RNA Biology, 2018, 15, 1192-1205.                                                                                           | 3.1 | 32        |
| 58 | Anti-cancer Drug Response Prediction Using Neighbor-Based Collaborative Filtering with Global<br>Effect Removal. Molecular Therapy - Nucleic Acids, 2018, 13, 303-311.                                                             | 5.1 | 56        |
| 59 | MicroRNA-small molecule association identification: from experimental results to computational models. Briefings in Bioinformatics, 2018, , .                                                                                      | 6.5 | 105       |
| 60 | Prediction of Potential Small Molecule-Associated MicroRNAs Using Graphlet Interaction. Frontiers in Pharmacology, 2018, 9, 1152.                                                                                                  | 3.5 | 33        |
| 61 | A Hybrid Interpolation Weighted Collaborative Filtering Method for Anti-cancer Drug Response<br>Prediction. Frontiers in Pharmacology, 2018, 9, 1017.                                                                              | 3.5 | 38        |
| 62 | Increased plasma prothrombin time is associated with poor prognosis in patients with paraquat poisoning. Journal of Clinical Laboratory Analysis, 2018, 32, e22597.                                                                | 2.1 | 4         |
| 63 | Predicting miRNA–disease association based on inductive matrix completion. Bioinformatics, 2018, 34, 4256-4265.                                                                                                                    | 4.1 | 448       |
| 64 | Therapeutic Angiogenesis of Chinese Herbal Medicines in Ischemic Heart Disease: A Review. Frontiers in<br>Pharmacology, 2018, 9, 428.                                                                                              | 3.5 | 37        |
| 65 | GRMDA: Graph Regression for MiRNA-Disease Association Prediction. Frontiers in Physiology, 2018, 9, 92.                                                                                                                            | 2.8 | 30        |
| 66 | Editorial: Identifying Drug-target Interactions Based on Heterogeneous Biological Data - PART 2.<br>Current Protein and Peptide Science, 2018, 19, 524-524.                                                                        | 1.4 | 0         |
| 67 | Inferring potential small molecule–miRNA association based on triple layer heterogeneous network.<br>Journal of Cheminformatics, 2018, 10, 30.                                                                                     | 6.1 | 65        |
| 68 | SSCMDA: spy and super cluster strategy for MiRNA-disease association prediction. Oncotarget, 2018, 9, 1826-1842.                                                                                                                   | 1.8 | 10        |
| 69 | MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction. PLoS Computational Biology, 2018, 14, e1006418.                                                                            | 3.2 | 323       |
| 70 | TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association<br>Prediction. Frontiers in Genetics, 2018, 9, 234.                                                                                      | 2.3 | 27        |
| 71 | Prediction of subcellular location of apoptosis proteins by incorporating PsePSSM and DCCA coefficient based on LFDA dimensionality reduction. BMC Genomics, 2018, 19, 478.                                                        | 2.8 | 55        |
| 72 | A Novel Computational Method for the Identification of Potential miRNA-Disease Association Based on<br>Symmetric Non-negative Matrix Factorization and Kronecker Regularized Least Square. Frontiers in<br>Genetics, 2018, 9, 324. | 2.3 | 35        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Editorial: Identifying Drug-target Interactions Based on Heterogeneous Biological Data - PART 1.<br>Current Protein and Peptide Science, 2018, 19, 428-429.                                                                      | 1.4  | 1         |
| 74 | A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences. Current Protein and Peptide Science, 2018, 19, 468-478.                                                                  | 1.4  | 69        |
| 75 | A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics, 2017, 33, 733-739.                                                                              | 4.1  | 222       |
| 76 | Long non-coding RNAs and complex diseases: from experimental results to computational models.<br>Briefings in Bioinformatics, 2017, 18, bbw060.                                                                                  | 6.5  | 477       |
| 77 | PSPEL: In Silico Prediction of Self-Interacting Proteins from Amino Acids Sequences Using Ensemble Learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 1165-1172.                             | 3.0  | 56        |
| 78 | Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary<br>information from position-specific scoring matrix and ensemble classifier. Journal of Theoretical<br>Biology, 2017, 418, 105-110. | 1.7  | 50        |
| 79 | RKNNMDA: Ranking-based KNN for MiRNA-Disease Association prediction. RNA Biology, 2017, 14, 952-962.                                                                                                                             | 3.1  | 152       |
| 80 | A novel computational model based on super-disease and miRNA for potential miRNA–disease<br>association prediction. Molecular BioSystems, 2017, 13, 1202-1212.                                                                   | 2.9  | 47        |
| 81 | Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network. Journal of Theoretical Biology, 2017, 430, 9-20.                          | 1.7  | 17        |
| 82 | Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep<br>neural network. Molecular BioSystems, 2017, 13, 1336-1344.                                                                | 2.9  | 114       |
| 83 | HAMDA: Hybrid Approach for MiRNA-Disease Association prediction. Journal of Biomedical Informatics, 2017, 76, 50-58.                                                                                                             | 4.3  | 47        |
| 84 | NARRMDA: negative-aware and rating-based recommendation algorithm for miRNA–disease association prediction. Molecular BioSystems, 2017, 13, 2650-2659.                                                                           | 2.9  | 23        |
| 85 | In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences. Scientific Reports, 2017, 7, 11174.                                                                             | 3.3  | 62        |
| 86 | LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe–Disease Association prediction.<br>Scientific Reports, 2017, 7, 7601.                                                                                            | 3.3  | 112       |
| 87 | Enterovirus 71 infection impairs the reproductive capacity of female mice. Experimental and Therapeutic Medicine, 2017, 14, 403-409.                                                                                             | 1.8  | 2         |
| 88 | Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection.<br>Biosensors and Bioelectronics, 2017, 93, 94-101.                                                                               | 10.1 | 95        |
| 89 | MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA–disease<br>association prediction. Journal of Translational Medicine, 2017, 15, 251.                                                        | 4.4  | 43        |
| 90 | MCMDA: Matrix completion for MiRNA-disease association prediction. Oncotarget, 2017, 8, 21187-21199.                                                                                                                             | 1.8  | 189       |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Prediction of Drug–Target Interaction Networks from the Integration of Protein Sequences and Drug<br>Chemical Structures. Molecules, 2017, 22, 1119.                                                                                               | 3.8 | 61        |
| 92  | PBHMDA: Path-Based Human Microbe-Disease Association Prediction. Frontiers in Microbiology, 2017, 8, 233.                                                                                                                                          | 3.5 | 97        |
| 93  | NRDTD: a database for clinically or experimentally supported non-coding RNAs and drug targets associations. Database: the Journal of Biological Databases and Curation, 2017, 2017, .                                                              | 3.0 | 60        |
| 94  | LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.<br>PLoS Computational Biology, 2017, 13, e1005912.                                                                                              | 3.2 | 254       |
| 95  | Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model. Journal of Translational Medicine, 2017, 15, 209.                                                                    | 4.4 | 105       |
| 96  | PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike<br>Moments Descriptor to Predict Protein–Protein Interactions from Protein Sequences. International<br>Journal of Molecular Sciences, 2017, 18, 1029. | 4.1 | 61        |
| 97  | PRMDA: personalized recommendation-based MiRNA-disease association prediction. Oncotarget, 2017, 8, 85568-85583.                                                                                                                                   | 1.8 | 32        |
| 98  | An ensemble approach for large-scale identification of protein-protein interactions using the alignments of multiple sequences. Oncotarget, 2017, 8, 5149-5159.                                                                                    | 1.8 | 40        |
| 99  | DLREFD: a database providing associations of long non-coding RNAs, environmental factors and phenotypes. Database: the Journal of Biological Databases and Curation, 2017, 2017, .                                                                 | 3.0 | 12        |
| 100 | Computational Methods for the Prediction of Drug-Target Interactions from Drug Fingerprints and<br>Protein Sequences by Stacked Auto-Encoder Deep Neural Network. Lecture Notes in Computer Science,<br>2017, , 46-58.                             | 1.3 | 12        |
| 101 | PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Computational Biology, 2017, 13, e1005455.                                                                                              | 3.2 | 387       |
| 102 | Accurate prediction of protein-protein interactions by integrating potential evolutionary<br>information embedded in PSSM profile and discriminative vector machine classifier. Oncotarget, 2017,<br>8, 23638-23649.                               | 1.8 | 36        |
| 103 | VEGF stimulated the angiogenesis by promoting the mitochondrial functions. Oncotarget, 2017, 8, 77020-77027.                                                                                                                                       | 1.8 | 66        |
| 104 | FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model. Oncotarget, 2016, 7, 45948-45958.                                                                                                                                    | 1.8 | 103       |
| 105 | HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction. Oncotarget, 2016, 7, 65257-65269.                                                                                                                                  | 1.8 | 219       |
| 106 | Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix. Oncotarget, 2016, 7, 82440-82449.                                                            | 1.8 | 24        |
| 107 | Current Computational Models for Prediction of the Varied Interactions Related to Noncoding RNAs.<br>BioMed Research International, 2016, 2016, 1-2.                                                                                               | 1.9 | 3         |
| 108 | IRWRLDA: improved random walk with restart for lncRNA-disease association prediction. Oncotarget, 2016, 7, 57919-57931.                                                                                                                            | 1.8 | 200       |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Detection of Interactions between Proteins through Rotation Forest and Local Phase Quantization Descriptors. International Journal of Molecular Sciences, 2016, 17, 21.                                                           | 4.1 | 51        |
| 110 | Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary<br>Information and Physicochemical Characteristics. International Journal of Molecular Sciences, 2016,<br>17, 1396.                     | 4.1 | 35        |
| 111 | Stochastic modeling suggests that noise reduces differentiation efficiency by inducing a heterogeneous drug response in glioma differentiation therapy. BMC Systems Biology, 2016, 10, 73.                                        | 3.0 | 8         |
| 112 | WBSMDA: Within and Between Score for MiRNA-Disease Association prediction. Scientific Reports, 2016, 6, 21106.                                                                                                                    | 3.3 | 314       |
| 113 | Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3<br>by enhancing the Akt signaling pathway. Biochemical and Biophysical Research Communications, 2016,<br>478, 199-205.    | 2.1 | 57        |
| 114 | A potential target gene for the host-directed therapy of mycobacterial infection in murine macrophages. International Journal of Molecular Medicine, 2016, 38, 823-833.                                                           | 4.0 | 7         |
| 115 | Construction of reliable protein–protein interaction networks using weighted sparse representation<br>based classifier with pseudo substitution matrix representation features. Neurocomputing, 2016, 218,<br>131-138.            | 5.9 | 45        |
| 116 | Improving protein–protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. Protein Science, 2016, 25, 1825-1833.                                                       | 7.6 | 31        |
| 117 | Comparative evaluation of the wound-healing potency of recombinant bFGF and ski gene therapy in rats. Growth Factors, 2016, 34, 119-127.                                                                                          | 1.7 | 4         |
| 118 | Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. Molecular BioSystems, 2016, 12, 3702-3710.                                                                  | 2.9 | 17        |
| 119 | Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. BMC Systems Biology, 2016, 10, 120.                                      | 3.0 | 25        |
| 120 | Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Modulates Interferon-β<br>Expression Mainly Through Attenuating Interferon-Regulatory Factor 3 Phosphorylation. DNA and<br>Cell Biology, 2016, 35, 489-497. | 1.9 | 3         |
| 121 | Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinformatics, 2016, 17, 184.                                                            | 2.6 | 125       |
| 122 | miREFRWR: a novel disease-related microRNA-environmental factor interactions prediction method.<br>Molecular BioSystems, 2016, 12, 624-633.                                                                                       | 2.9 | 55        |
| 123 | Distributed image understanding with semantic dictionary and semantic expansion. Neurocomputing, 2016, 174, 384-392.                                                                                                              | 5.9 | 23        |
| 124 | Drug–target interaction prediction: databases, web servers and computational models. Briefings in<br>Bioinformatics, 2016, 17, 696-712.                                                                                           | 6.5 | 496       |
| 125 | NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning. PLoS<br>Computational Biology, 2016, 12, e1004975.                                                                                             | 3.2 | 250       |
| 126 | Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination.<br>Oncotarget, 2016, 7, 63995-64006.                                                                                           | 1.8 | 43        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | ILNCSIM: improved IncRNA functional similarity calculation model. Oncotarget, 2016, 7, 25902-25914.                                                                                                 | 1.8  | 122       |
| 128 | Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Scientific Reports, 2015, 5, 13186.                                 | 3.3  | 207       |
| 129 | KATZLDA: KATZ measure for the IncRNA-disease association prediction. Scientific Reports, 2015, 5, 16840.                                                                                            | 3.3  | 205       |
| 130 | RBMMMDA: predicting multiple types of disease-microRNA associations. Scientific Reports, 2015, 5, 13877.                                                                                            | 3.3  | 154       |
| 131 | Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity. Scientific Reports, 2015, 5, 11338.                                         | 3.3  | 195       |
| 132 | Large scale image understanding with non-convex multi-task learning. , 2014, , .                                                                                                                    |      | 3         |
| 133 | MicroRNA-34a overcomes HGF-mediated gefitinib resistance in EGFR mutant lung cancer cells partly by targeting MET. Cancer Letters, 2014, 351, 265-271.                                              | 7.2  | 75        |
| 134 | Semi-supervised learning for potential human microRNA-disease associations inference. Scientific Reports, 2014, 4, 5501.                                                                            | 3.3  | 324       |
| 135 | A Computational Framework to Infer Human Disease-Associated Long Noncoding RNAs. PLoS ONE, 2014,<br>9, e84408.                                                                                      | 2.5  | 130       |
| 136 | ASDCD: Antifungal Synergistic Drug Combination Database. PLoS ONE, 2014, 9, e86499.                                                                                                                 | 2.5  | 65        |
| 137 | Novel human lncRNA–disease association inference based on lncRNA expression profiles.<br>Bioinformatics, 2013, 29, 2617-2624.                                                                       | 4.1  | 558       |
| 138 | LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Research, 2012, 41, D983-D986.                                                                                 | 14.5 | 869       |
| 139 | RWRMDA: predicting novel human microRNA–disease associations. Molecular BioSystems, 2012, 8, 2792.                                                                                                  | 2.9  | 389       |
| 140 | Drug–target interaction prediction by random walk on the heterogeneous network. Molecular<br>BioSystems, 2012, 8, 1970.                                                                             | 2.9  | 442       |
| 141 | Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a<br>Semi-Supervised Classifier. PLoS ONE, 2012, 7, e43425.                                         | 2.5  | 66        |
| 142 | A Novel Candidate Disease Genes Prioritization Method Based on Module Partition and Rank Fusion.<br>OMICS A Journal of Integrative Biology, 2010, 14, 337-356.                                      | 2.0  | 25        |
| 143 | Formulation and Delivery Mode Affect Disposition and Activity of Tyrphostin-Loaded Nanoparticles in the Rat Carotid Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1434-1439. | 2.4  | 53        |