
Xudong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/193017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An immersed-boundary method for flow–structure interaction in biological systems with application to phonation. Journal of Computational Physics, 2008, 227, 9303-9332.	3.8	155
2	An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: Application to MitralClip intervention planning. Medical Image Analysis, 2012, 16, 1330-1346.	11.6	94
3	A Computational Study of the Effect of False Vocal Folds on Glottal Flow and Vocal Fold Vibration During Phonation. Annals of Biomedical Engineering, 2009, 37, 625-642.	2.5	90
4	Subject-specific computational modeling of human phonation. Journal of the Acoustical Society of America, 2014, 135, 1445-1456.	1.1	50
5	Toward A Simulation-Based Tool for the Treatment of Vocal Fold Paralysis. Frontiers in Physiology, 2011, 2, 19.	2.8	40
6	The effect of wing flexibility on sound generation of flapping wings. Bioinspiration and Biomimetics, 2018, 13, 016010.	2.9	33
7	A framework for personalization of coronary flow computations during rest and hyperemia. , 2012, 2012, 6665-8.		28
8	Computational Modeling of Fluid–Structure–Acoustics Interaction during Voice Production. Frontiers in Bioengineering and Biotechnology, 2017, 5, 7.	4.1	28
9	A three-dimensional vocal fold posturing model based on muscle mechanics and magnetic resonance imaging of a canine larynx. Journal of the Acoustical Society of America, 2020, 147, 2597-2608.	1.1	23
10	Aerodynamics and motor control of ultrasonic vocalizations for social communication in mice and rats. BMC Biology, 2022, 20, 3.	3.8	23
11	Phase-difference on seal whisker surface induces hairpin vortices in the wake to suppress force oscillation. Bioinspiration and Biomimetics, 2019, 14, 066001.	2.9	18
12	Effects of cricothyroid and thyroarytenoid interaction on voice control: Muscle activity, vocal fold biomechanics, flow, and acoustics. Journal of the Acoustical Society of America, 2021, 150, 29-42.	1.1	16
13	An image-guided computational approach to inversely determine in vivo material properties and model flow-structure interactions of fish fins. Journal of Computational Physics, 2019, 392, 578-593.	3.8	15
14	The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model. Journal of Voice, 2017, 31, 275-281.	1.5	14
15	The effect of vocal fold vertical stiffness variation on voice production. Journal of the Acoustical Society of America, 2016, 140, 2856-2866.	1.1	13
16	A Deep Neural Network Based Glottal Flow Model for Predicting Fluid-Structure Interactions during Voice Production. Applied Sciences (Switzerland), 2020, 10, 705.	2.5	12
17	Effect of Subglottic Stenosis on Vocal Fold Vibration and Voice Production Using Fluid–Structure–Acoustics Interaction Simulation. Applied Sciences (Switzerland), 2021, 11, 1221.	2.5	12
18	High-fidelity continuum modeling predicts avian voiced sound production. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4718-4723.	7.1	11

XUDONG ZHENG

#	Article	IF	CITATIONS
19	Effect of Supraglottal Acoustics on Fluid–Structure Interaction During Human Voice Production. Journal of Biomechanical Engineering, 2021, 143, .	1.3	11
20	Computational Study of Effects of Tension Imbalance on Phonation in a Three-Dimensional Tubular Larynx Model. Journal of Voice, 2014, 28, 411-419.	1.5	10
21	Computational Modeling of Voice Production Using Excised Canine Larynx. Journal of Biomechanical Engineering, 2022, 144, .	1.3	9
22	Comparison of Full-Potential Propagation-Code Computations with the F-5E "Shaped Sonic Boom Experiment" Program. , 2005, , .		8
23	A finite element study on the cause of vocal fold vertical stiffness variation. Journal of the Acoustical Society of America, 2017, 141, EL351-EL356.	1.1	7
24	Effect of Longitudinal Variation of Vocal Fold Inner Layer Thickness on Fluid-Structure Interaction During Voice Production. Journal of Biomechanical Engineering, 2018, 140, .	1.3	7
25	Vocal fold vibration mode changes due to cricothyroid and thyroarytenoid muscle interaction in a three-dimensional model of the canine larynx. Journal of the Acoustical Society of America, 2021, 150, 1176-1187.	1.1	7
26	Influence of vocal fold cover layer thickness on its vibratory dynamics during voice production. Journal of the Acoustical Society of America, 2019, 146, 369-380.	1.1	6
27	Prediction of Superboom Problem Using Computational Solution of Nonlinear Tricomi Equation. , 2005, , .		5
28	An Integrated High-fidelity Approach for Modeling Flow-structure Interaction in Biological Propulsion and its Strong Validation. , 2018, , .		5
29	Coupling between a fiber-reinforced model and a Hill-based contractile model for passive and active tissue properties of laryngeal muscles: A finite element study. Journal of the Acoustical Society of America, 2018, 144, EL248-EL253.	1.1	5
30	A computational study of the effects of vocal fold stiffness parameters on voice production. Journal of Voice, 2021, 35, 327.e1-327.e11.	1.5	5
31	A Numerical Study of the Sound and Force Production of Flexible Insect Wings. Fluids, 2018, 3, 87.	1.7	4
32	Flow-signal correlation in seal whiskerÂarray sensing. Bioinspiration and Biomimetics, 2022, 17, 016004.	2.9	3
33	Computational Study of Hemodynamic Effects of Abnormal E/A Ratio on Left Ventricular Filling. Journal of Biomechanical Engineering, 2014, 136, 061005.	1.3	1
34	A Deep-Learning Based Generalized Empirical Flow Model of Glottal Flow During Normal Phonation. Journal of Biomechanical Engineering, 2022, , .	1.3	0