Eric F Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1930119/publications.pdf

Version: 2024-02-01

81900 133252 8,059 63 39 59 citations g-index h-index papers

63 63 63 5004 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural characterization of the homotropic cooperative binding of azamulin to human cytochrome P450 3A5. Journal of Biological Chemistry, 2022, 298, 101909.	3.4	5
2	Active-site differences between substrate-free and ritonavir-bound cytochrome P450 (CYP) 3A5 reveal plasticity differences between CYP3A5 and CYP3A4. Journal of Biological Chemistry, 2019, 294, 8015-8022.	3.4	32
3	The X-Ray Crystal Structure of the Human Mono-Oxygenase Cytochrome P450 3A5-Ritonavir Complex Reveals Active Site Differences between P450s 3A4 and 3A5. Molecular Pharmacology, 2018, 93, 14-24.	2.3	36
4	Noncovalent interactions dominate dynamic heme distortion in cytochrome P450 4B1. Journal of Biological Chemistry, 2018, 293, 11433-11446.	3.4	17
5	The Crystal Structure of Cytochrome P450 4B1 (CYP4B1) Monooxygenase Complexed with Octane Discloses Several Structural Adaptations for ω-Hydroxylation. Journal of Biological Chemistry, 2017, 292, 5610-5621.	3.4	43
6	Heme–thiolate sulfenylation of human cytochrome P450 4A11 functions as a redox switch for catalytic inhibition. Journal of Biological Chemistry, 2017, 292, 11230-11242.	3.4	23
7	Aminomethyl-Derived Beta Secretase (BACE1) Inhibitors: Engaging Gly230 without an Anilide Functionality. Journal of Medicinal Chemistry, 2017, 60, 386-402.	6.4	33
8	Determinants of the Inhibition of DprE1 and CYP2C9 by Antitubercular Thiophenes. Angewandte Chemie, 2017, 129, 13191-13195.	2.0	1
9	Determinants of the Inhibition of DprE1 and CYP2C9 by Antitubercular Thiophenes. Angewandte Chemie - International Edition, 2017, 56, 13011-13015.	13.8	36
10	20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice. Journal of Biological Chemistry, 2016, 291, 16904-16919.	3.4	27
11	Contributions of Ionic Interactions and Protein Dynamics to Cytochrome P450 2D6 (CYP2D6) Substrate and Inhibitor Binding. Journal of Biological Chemistry, 2015, 290, 5092-5104.	3.4	86
12	Utilizing Structures of CYP2D6 and BACE1 Complexes To Reduce Risk of Drug–Drug Interactions with a Novel Series of Centrally Efficacious BACE1 Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 3223-3252.	6.4	62
13	Structures of Cytochrome P450 Enzymes. , 2015, , 3-32.		26
14	Correlating Structure and Function of Drug-Metabolizing Enzymes: Progress and Ongoing Challenges. Drug Metabolism and Disposition, 2014, 42, 9-22.	3.3	20
15	Structural Diversity of Eukaryotic Membrane Cytochrome P450s. Journal of Biological Chemistry, 2013, 288, 17082-17090.	3.4	92
16	Structural Characterization of Human Cytochrome P450 2C19. Journal of Biological Chemistry, 2012, 287, 44581-44591.	3.4	100
17	Crystal Structure of Human Cytochrome P450 2D6 with Prinomastat Bound. Journal of Biological Chemistry, 2012, 287, 10834-10843.	3.4	95
18	5-Aminoimidazole-4-carboxyamide-ribonucleoside (AICAR)-Stimulated Hepatic Expression of <i>Cyp4a10</i> , <i>Cyp4a14</i> , <i>Cyp4a31</i> , and Other Peroxisome Proliferator-Activated Receptor α-Responsive Mouse Genes Is AICAR 5′-Monophosphate-Dependent and AMP-Activated Protein Kinase-Independent. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 886-895.	2.5	31

#	Article	IF	Citations
19	Genistein, Resveratrol, and 5-Aminoimidazole-4-carboxamide- $1\cdot \hat{l}^2$ -d-ribofuranoside Induce Cytochrome P450 4F2 Expression through an AMP-Activated Protein Kinase-Dependent Pathway. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 125-136.	2.5	40
20	Structural Characterization of the Complex between $\hat{l}\pm$ -Naphthoflavone and Human Cytochrome P450 1B1. Journal of Biological Chemistry, 2011, 286, 5736-5743.	3.4	151
21	Crystal Structure of CYP24A1, a Mitochondrial Cytochrome P450 Involved in Vitamin D Metabolism. Journal of Molecular Biology, 2010, 396, 441-451.	4.2	157
22	Regulation of cyp4a31 by AMPâ€activated protein kinase and peroxisome proliferator activated receptor alpha. FASEB Journal, 2010, 24, 757.13.	0.5	0
23	Opposing Roles of Peroxisome Proliferator-activated Receptor α and Growth Hormone in the Regulation of CYP4A11 Expression in a Transgenic Mouse Model. Journal of Biological Chemistry, 2009, 284, 16541-16552.	3.4	28
24	Use of complementary cation and anion heavy-atom salt derivatives to solve the structure of cytochrome P450 46A1. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 487-495.	2.5	23
25	Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9546-9551.	7.1	108
26	Determinants of Cytochrome P450 2C8 Substrate Binding. Journal of Biological Chemistry, 2008, 283, 17227-17237.	3.4	143
27	Human Cytochrome P450 Family 4 Enzymes: Function, Genetic Variation and Regulation. Drug Metabolism Reviews, 2007, 39, 515-538.	3.6	118
28	Adaptations for the Oxidation of Polycyclic Aromatic Hydrocarbons Exhibited by the Structure of Human P450 1A2. Journal of Biological Chemistry, 2007, 282, 14348-14355.	3.4	421
29	Synthetic Inhibitors of Cytochrome P-450 2A6:  Inhibitory Activity, Difference Spectra, Mechanism of Inhibition, and Protein Cocrystallization. Journal of Medicinal Chemistry, 2006, 49, 6987-7001.	6.4	116
30	Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nature Structural and Molecular Biology, 2005, 12, 822-823.	8.2	310
31	Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases. Biochemical and Biophysical Research Communications, 2005, 338, 331-336.	2.1	128
32	Conditional regulation of the human CYP4X1 and CYP4Z1 genes. Archives of Biochemistry and Biophysics, 2005, 436, 377-385.	3.0	44
33	Structures of Cytochrome P450 Enzymes. , 2005, , 87-114.		54
34	Structure of Human Microsomal Cytochrome P450 2C8. Journal of Biological Chemistry, 2004, 279, 9497-9503.	3.4	349
35	Structure of Mammalian Cytochrome P450 2B4 Complexed with 4-(4-Chlorophenyl)imidazole at 1.9-Ã Resolution. Journal of Biological Chemistry, 2004, 279, 27294-27301.	3.4	272
36	The Structure of Human Microsomal Cytochrome P450 3A4 Determined by X-ray Crystallography to 2.05-Ã Resolution. Journal of Biological Chemistry, 2004, 279, 38091-38094.	3.4	622

#	Article	IF	Citations
37	The Structure of Human Cytochrome P450 2C9 Complexed with Flurbiprofen at 2.0-Ã Resolution. Journal of Biological Chemistry, 2004, 279, 35630-35637.	3.4	403
38	Sulfaphenazole Derivatives as Tools for Comparing Cytochrome P450 2C5 and Human Cytochromes P450 2Cs: Identification of a New High Affinity Substrate Common to Those Enzymesâ€. Biochemistry, 2003, 42, 6363-6369.	2.5	28
39	Structure of a Substrate Complex of Mammalian Cytochrome P450 2C5 at 2.3 à Resolution: Evidence for Multiple Substrate Binding Modesâ€,‡. Biochemistry, 2003, 42, 6370-6379.	2.5	210
40	Differential regulation of human CYP4A genes by peroxisome proliferators and dexamethasone. Archives of Biochemistry and Biophysics, 2003, 409, 212-220.	3.0	43
41	Structure of Mammalian Cytochrome P450 2C5 Complexed with Diclofenac at 2.1ÂÃ Resolution:Â Evidence for an Induced Fit Model of Substrate Bindingâ€,‡. Biochemistry, 2003, 42, 9335-9345.	2.5	195
42	An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13196-13201.	7.1	362
43	THE 2002 BERNARD B. BRODIE AWARD LECTURE. Drug Metabolism and Disposition, 2003, 31, 1532-1540.	3.3	38
44	THE STRUCTURE OF MICROSOMAL CYTOCHROME P450 2C5: A STEROID AND DRUG METABOLIZING ENZYME. Endocrine Research, 2002, 28, 435-441.	1.2	16
45	The CYP4A Isoforms Hydroxylate Epoxyeicosatrienoic Acids to Form High Affinity Peroxisome Proliferator-activated Receptor Ligands. Journal of Biological Chemistry, 2002, 277, 35105-35112.	3.4	190
46	Regulation of P450 4A expression by peroxisome proliferator activated receptors. Toxicology, 2002, 181-182, 203-206.	4.2	69
47	Identification of Peroxisome Proliferator-responsive Human Genes by Elevated Expression of the Peroxisome Proliferator-activated Receptor I± in HepG2 Cells. Journal of Biological Chemistry, 2001, 276, 27950-27958.	3.4	166
48	Engineering Microsomal Cytochrome P450 2C5 to Be a Soluble, Monomeric Enzyme. Journal of Biological Chemistry, 2000, 275, 2545-2553.	3.4	154
49	Mammalian Microsomal Cytochrome P450 Monooxygenase. Molecular Cell, 2000, 5, 121-131.	9.7	738
50	Identification of Amino Acid Substitutions that Confer a High Affinity for Sulfaphenazole Binding and a High Catalytic Efficiency for Warfarin Metabolism To P450 2C19â€. Biochemistry, 1998, 37, 16270-16279.	2.5	60
51	Peroxisome Proliferator Activated Receptor-α Expression in Human Liver. Molecular Pharmacology, 1998, 53, 14-22.	2.3	447
52	A Carboxyl-terminal Extension of the Zinc Finger Domain Contributes to the Specificity and Polarity of Peroxisome Proliferator-activated Receptor DNA Binding. Journal of Biological Chemistry, 1998, 273, 27988-27997.	3.4	89
53	Microsomal P450 2C3 Is Expressed as a Soluble Dimer inEscherichia coliFollowing Modifications of Its N-terminus. Archives of Biochemistry and Biophysics, 1997, 339, 107-114.	3.0	110
54	Role of the peroxisome proliferatorâ€activated receptor in cytochrome P450 4A gene regulation. FASEB Journal, 1996, 10, 1241-1248.	0.5	169

#	Article	IF	CITATIONS
55	Novel Sequence Determinants in Peroxisome Proliferator Signaling. Journal of Biological Chemistry, 1995, 270, 16114-16121.	3.4	252
56	A Universal Approach to the Expression of Human and Rabbit Cytochrome P450s of the 2C Subfamily in Escherichia coli. Archives of Biochemistry and Biophysics, 1995, 323, 87-96.	3.0	135
57	Structures of Eukaryotic Cytochrome P450 Enzymes. , 1995, , 183-223.		68
58	Characterization of a cDNA encoding a human kidney, cytochrome 4A fatty acid ω-hydroxylase and the cognate enzyme expressed in Escherichia coli. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1172, 161-166.	2.4	65
59	Cloning and expression of three rabbit kidney cDNAs encoding lauric acid .omegahydroxylases. Biochemistry, 1990, 29, 873-879.	2.5	64
60	Genetic contributions to the variation among rabbits of liver microsomal deoxycorticosterone synthesis. Archives of Biochemistry and Biophysics, 1989, 273, 273-280.	3.0	9
61	Variation in hepatic microsomal cytochrome P-450 1 concentration among untreated rabbits alters the efficiency of estradiol hydroxylation. Archives of Biochemistry and Biophysics, 1985, 237, 17-26.	3.0	20
62	Metabolic processing of 2-acetylaminofluorene by microsomes and six highly purified cytochrome P-450 forms from rabbit liver. Carcinogenesis, 1984, 5, 1717-1723.	2.8	36
63	Identification of rabbit microsomal cytochrome P-450 isozyme, form 1, as a hepatic progesterone 21-hydroxylase. Biochemical and Biophysical Research Communications, 1982, 105, 515-520.	2.1	74