Kenneth Lukowiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1930005/publications.pdf

Version: 2024-02-01

117453 155451 4,295 156 34 55 citations g-index h-index papers 158 158 158 1339 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CNS serotonin content mediating food deprivation-enhanced learning is regulated by hemolymph tryptophan concentration and autophagic flux in the pond snail. Nutritional Neuroscience, 2023, 26, 217-227.	1.5	11
2	A flavonoid, quercetin, is capable of enhancing long-term memory formation if encountered at different times in the learning, memory formation, and memory recall continuum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, 208, 253-265.	0.7	6
3	Fluoride alters feeding and memory in Lymnaea stagnalis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, 208, 267-277.	0.7	2
4	A change in taste: the role of microRNAs in altering hedonic value. Journal of Experimental Biology, 2022, 225, .	0.8	6
5	Nature versus nurture in heat stress induced learning between inbred and outbred populations of Lymnaea stagnalis. Journal of Thermal Biology, 2022, 103, 103170.	1.1	11
6	Epicatechin Alters the Activity of a Neuron Necessary for Long-Term Memory of Aerial Respiratory Behavior in Lymnaea stagnalis. Zoological Science, 2022, 39, .	0.3	4
7	Risk in one is not risk in all: snails show differential decision making under high- and low-risk environments. Animal Behaviour, 2022, 190, 53-60.	0.8	8
8	What can we teach <i>Lymnaea</i> and what can <i>Lymnaea</i> teach us?. Biological Reviews, 2021, 96, 1590-1602.	4.7	32
9	In the great pond snail (<i>Lymnaea stagnalis</i>), two stressors that individually enhance memory in combination block memory formation. Canadian Journal of Zoology, 2021, 99, 299-307.	0.4	1
10	A thermal stressor, propranolol and long-term memory formation in freshly collected Lymnaea. Journal of Experimental Biology, 2021, 224, .	0.8	1
11	To eat or not to eat: a Garcia effect in pond snails (Lymnaea stagnalis). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 479-495.	0.7	24
12	The temperature sensitivity of memory formation and persistence is altered by cold acclimation in a pond snail. Journal of Experimental Biology, 2021, 224, .	0.8	5
13	Long-term memory of configural learning is enhanced via CREB upregulation by the flavonoid quercetin in <i>Lymnaea stagnalis</i>). Journal of Experimental Biology, 2021, 224, .	0.8	15
14	Configural learning memory can be transformed from intermediate-term to long-term in pond snail Lymnaea stagnalis. Physiology and Behavior, 2021, 239, 113509.	1.0	8
15	Epicatechin increases the persistence of long-term memory formed by conditioned taste aversion in Lymnaea. Journal of Experimental Biology, 2021, 224, .	0.8	6
16	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. PLoS ONE, 2020, 15, e0237700.	1.1	8
17	Stress before training alters memory retrieval of a non-declarative memory in Lymnaea. Journal of Experimental Biology, 2020, 223, .	0.8	5
18	Induction of LTM following an Insulin Injection. ENeuro, 2020, 7, ENEURO.0088-20.2020.	0.9	17

#	Article	IF	CITATIONS
19	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		O
20	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai., 2020, 15, e0237700.		0
21	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		0
22	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai., 2020, 15, e0237700.		0
23	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		0
24	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai., 2020, 15, e0237700.		0
25	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		0
26	Region-specific changes in Mus musculus brain size and cell composition under chronic nutrient restriction. Journal of Experimental Biology, 2019, 222, .	0.8	5
27	Monoamines, Insulin and the Roles They Play in Associative Learning in Pond Snails. Frontiers in Behavioral Neuroscience, 2019, 13, 65.	1.0	28
28	Shell damage leads to enhanced memory formation in <i>Lymnaea</i> . Journal of Experimental Biology, 2019, 222, .	0.8	9
29	Configural learning in freshly collected, smart, wild Lymnaea. Journal of Experimental Biology, 2019, 222, .	0.8	17
30	Strain transformation: Enhancement of invertebrate memory in a new rearing environment. Journal of Experimental Biology, 2019, 222, .	0.8	8
31	Configural learning: a higher form of learning in <i>Lymnaea</i> . Journal of Experimental Biology, 2019, 222, .	0.8	24
32	Green tea and cocoa enhance cognition in Lymnaea. Communicative and Integrative Biology, 2018, 11, e1434390.	0.6	20
33	The effect of rearing environment on memory formation. Journal of Experimental Biology, 2018, 221, .	0.8	7
34	Propranolol disrupts consolidation of emotional memory in Lymnaea. Neurobiology of Learning and Memory, 2018, 149, 1-9.	1.0	7
35	Effects of 5-HT and insulin on learning and memory formation in food-deprived snails. Neurobiology of Learning and Memory, 2018, 148, 20-29.	1.0	20
36	Strain-specific effects of crowding on long-term memory formation in Lymnaea. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2018, 222, 43-51.	0.8	14

3

#	Article	IF	Citations
37	Combining Factors That Individually Enhance Memory in <i>Lymnaea</i> . Biological Bulletin, 2018, 234, 37-44.	0.7	7
38	Body size and allometric variation in facial shape in children. American Journal of Physical Anthropology, 2018, 165, 327-342.	2.1	23
39	Facial shape manifestations of growth faltering in Tanzanian children. Journal of Anatomy, 2018, 232, 250-262.	0.9	4
40	Comparison of brain monoamine content in three populations of <i>Lymnaea</i> that correlates with taste-aversive learning ability. Biophysics and Physicobiology, 2018, 15, 129-135.	0.5	11
41	Black tea differs from green tea: it suppresses long-term memory formation in $\langle i \rangle$ Lymnaea $\langle i \rangle$. Communicative and Integrative Biology, 2018, 11, 1-4.	0.6	5
42	Weak involvement of octopamine in aversive taste learning in a snail. Neurobiology of Learning and Memory, 2017, 141, 189-198.	1.0	15
43	Silver nanoparticles alter learning and memory formation in an aquatic organism, Lymnaea stagnalis. Environmental Pollution, 2017, 225, 403-411.	3.7	9
44	Pharmacological effects of cannabinoids on learning and memory in Lymnaea. Journal of Experimental Biology, 2017, 220, 3026-3038.	0.8	17
45	Strain-specific differences of the effects of stress on memory in <i>Lymnaea</i> . Journal of Experimental Biology, 2017, 220, 891-899.	0.8	28
46	Two Strains of Lymnaea stagnalis and the Progeny from Their Mating Display Differential Memory-Forming Ability on Associative Learning Tasks. Frontiers in Behavioral Neuroscience, 2017, 11, 161.	1.0	17
47	Genomewide Association Study of African Children Identifies Association of SCHIP1 and PDE8A with Facial Size and Shape. PLoS Genetics, 2016, 12, e1006174.	1.5	81
48	Relationship between the grades of a learned aversive-feeding response and the dopamine contents in Lymnaea. Biology Open, 2016, 5, 1869-1873.	0.6	20
49	Juveniles of Lymnaea smart snails do not perseverate and have the capacity to form LTM. Journal of Experimental Biology, 2016, 220, 408-413.	0.8	10
50	Heat stress enhances LTM formation in <i>Lymnaea</i> : role of HSPs and DNA methylation. Journal of Experimental Biology, 2016, 219, 1337-1345.	0.8	34
51	Training Lymnaea in the presence of a predator scent results in a long-lasting ability to form enhanced long-term memory. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 399-409.	0.7	15
52	Qualitatively different memory states in Lymnaea as shown by differential responses to propranolol. Neurobiology of Learning and Memory, 2016, 136, 63-73.	1.0	18
53	Epicatechin, a component of dark chocolate, enhances memory formation if applied during the memory consolidation period. Communicative and Integrative Biology, 2016, 9, e1205772.	0.6	21
54	An automated learning apparatus for classical conditioning of Lymnaea stagnalis. Journal of Neuroscience Methods, 2016, 259, 115-121.	1.3	9

#	Article	IF	Citations
55	A flavanoid component of chocolate quickly reverses an imposed memory deficit. Journal of Experimental Biology, 2016, 219, 816-23.	0.8	14
56	The Yerkes-Dodson law and appropriate stimuli for conditioned taste aversion in <i>Lymnaea</i> Journal of Experimental Biology, 2015, 218, 336-9.	0.8	30
57	Memory block: A consequence of conflict resolution. Journal of Experimental Biology, 2015, 218, 1699-704.	0.8	29
58	Sequential exposure to a combination of stressors blocks memory reconsolidation in <i>Lymnaea</i> Journal of Experimental Biology, 2015, 218, 923-930.	0.8	10
59	Time-related expression profiles for heat shock protein gene transcripts (<i>HSP40, HSP70</i>) in the central nervous system of <i>Lymnaea stagnalis</i> exposed to thermal stress. Communicative and Integrative Biology, 2015, 8, e1040954.	0.6	38
60	Environmentally relevant stressors alter memory formation in the pond snail <i>Lymnaea</i> . Journal of Experimental Biology, 2014, 217, 76-83.	0.8	56
61	A flavonol, epicatechin, reverses the suppressive effects of a stressor on LTM formation. Journal of Experimental Biology, 2014, 217, 4004-9.	0.8	17
62	Enhanced memory persistence is blocked by a DNA methyltransferase inhibitor in the snail <i>Lymnaea stagnalis</i> . Journal of Experimental Biology, 2014, 217, 2920-9.	0.8	25
63	Protein kinase C mediates memory consolidation of taste avoidance conditioning in Lymnaea stagnalis. Neurobiology of Learning and Memory, 2014, 111, 9-18.	1.0	14
64	What are the elements of motivation for acquisition of conditioned taste aversion?. Neurobiology of Learning and Memory, 2014, 107, 1-12.	1.0	30
65	An increase in insulin is important for the acquisition conditioned taste aversion in Lymnaea. Neurobiology of Learning and Memory, 2014, 116, 132-138.	1.0	30
66	Spaced taste avoidance conditioning in Lymnaea. Neurobiology of Learning and Memory, 2014, 107, 79-86.	1.0	15
67	Electrophysiological characteristics of feeding-related neurons after taste avoidance Pavlovian conditioning in Lymnaea stagnalis. Biophysics (Nagoya-shi, Japan), 2014, 10, 121-133.	0.4	8
68	The participation of NMDA receptors, PKC, and MAPK in Lymnaea memory extinction. Neurobiology of Learning and Memory, 2013, 100, 64-69.	1.0	5
69	High voltage with little current as an unconditional stimulus for taste avoidance conditioning in Lymnaea stagnalis. Neuroscience Letters, 2013, 555, 149-153.	1.0	17
70	Paired pulse ratio analysis of insulin-induced synaptic plasticity in the snail brain. Journal of Experimental Biology, 2013, 216, 1771-3.	0.8	25
71	Involvement of Insulin-Like Peptide in Long-Term Synaptic Plasticity and Long-Term Memory of the Pond Snail <i>Lymnaea stagnalis</i> Journal of Neuroscience, 2013, 33, 371-383.	1.7	59
72	Consolidation of long-term memory by insulin inLymnaeais not brought about by changing the number of insulin receptors. Communicative and Integrative Biology, 2013, 6, e23955.	0.6	28

#	Article	IF	Citations
73	Operant Conditioning of Respiration in Lymnaea. Handbook of Behavioral Neuroscience, 2013, , 265-279.	0.7	1
74	Critical Period of Memory Enhancement during Taste Avoidance Conditioning in Lymnaea stagnalis. PLoS ONE, 2013, 8, e75276.	1.1	15
75	Combining Stressors That Individually Impede Long-Term Memory Blocks All Memory Processes. PLoS ONE, 2013, 8, e79561.	1.1	16
76	Increase in cyclic AMP concentration in a cerebral giant interneuron mimics part of a memory trace for conditioned taste aversion of the pond snail. Biophysics (Nagoya-shi, Japan), 2013, 9, 161-166.	0.4	16
77	Sensory input from the osphradium modulates the response to memory-enhancing stressors in <i>Lymnaea stagnalis</i> . Journal of Experimental Biology, 2012, 215, 536-542.	0.8	21
78	A flavonol present in cocoa [(â^')epicatechin] enhances snail memory. Journal of Experimental Biology, 2012, 215, 3566-3576.	0.8	29
79	What's hot: the enhancing effects of thermal stress on long-term memory formation in <i>Lymnaea stagnalis</i> . Journal of Experimental Biology, 2012, 215, 4322-9.	0.8	38
80	Differences in neuronal activity explain differences in memory forming abilities of different populations of Lymnaea stagnalis. Neurobiology of Learning and Memory, 2012, 97, 173-182.	1.0	31
81	How Stress Alters Memory in â€~Smart' Snails. PLoS ONE, 2012, 7, e32334.	1.1	24
82	Alternate behavioural measurements following a single operant training regime demonstrate differences in memory retention. Animal Cognition, 2012, 15, 483-494.	0.9	3
83	Low environmental calcium blocks long-term memory formation in a freshwater pulmonate snail. Neurobiology of Learning and Memory, 2011, 95, 393-403.	1.0	35
84	Intermediate and long-term memory are different at the neuronal level in Lymnaea stagnalis (L.). Neurobiology of Learning and Memory, 2011, 96, 403-416.	1.0	37
85	Does Conditioned Taste Aversion Learning in the Pond Snail <i>Lymnaea stagnalis</i> Produce Conditioned Fear?. Biological Bulletin, 2011, 220, 71-81.	0.7	18
86	Microgeographical variability in long-term memory formation in the pond snail, Lymnaea stagnalis. Animal Behaviour, 2011, 82, 311-319.	0.8	27
87	Social snails: the effect of social isolation on cognition is dependent on environmental context. Journal of Experimental Biology, 2011, 214, 4179-4185.	0.8	15
88	Sensory mediation of memory blocking stressors in the pond snail <i>Lymnaea stagnalis</i> Li>Lymnaea stagnalisLi>Lymnaea stagnalisLi>Li>Lymnaea stagnalisLi>Li>Lymnaea stagnalisLi>Li>Lymnaea stagnalisLi>Li>Li>Lymnaea stagnalisLi>Li>Lymnaea stagnalisLi>Li>Li>Lymnaea stagnalisLi>Li>Li>Lymnaea stagnalisLi>Li>Li>Lymnaea stagnalisLi>Li>Li>Lymnaea stagnalisLi>Li>Li>Lymnaea stagnalisLi>Li>Li>Lymnaea stagnalisLi>Li>Li>Lymnaea stagnalisLi>Li>Li>Lymnaea stagnalisLi>Li>Li>Li>Li>Li>Li>Li>Li>Li>Li>Li>Li	0.8	23
89	Interaction between environmental stressors mediated via the same sensory pathway. Communicative and Integrative Biology, 2011, 4, 717-719.	0.6	8
90	Low external environmental calcium levels prevent forgetting in <i>Lymnaea</i> . Journal of Experimental Biology, 2011, 214, 2118-2124.	0.8	28

#	Article	IF	CITATIONS
91	A quantitative proteomic analysis of long-term memory. Molecular Brain, 2010, 3, 9.	1.3	32
92	The shadow-induced withdrawal response, dermal photoreceptors, and their input to the higher-order interneuron RPeD11 in the pond snail <i>Lymnaea stagnalis</i> . Journal of Experimental Biology, 2010, 213, 3409-3415.	0.8	19
93	The role of serotonin in the enhancement of long-term memory resulting from predator detection in Lymnaea. Journal of Experimental Biology, 2010, 213, 3603-3614.	0.8	50
94	Effect of acute exposure to low environmental calcium on respiration and locomotion in <i>Lymnaea stagnalis</i> (L.). Journal of Experimental Biology, 2010, 213, 1471-1476.	0.8	84
95	Sympatric predator detection alters cutaneous respiration in Lymnaea. Communicative and Integrative Biology, 2010, 3, 42-45.	0.6	10
96	The participation of NMDA receptors, PKC, and MAPK in the formation of memory following operant conditioning in Lymnaea. Molecular Brain, 2010, 3, 24.	1.3	30
97	Ecologically relevant stressors modify long-term memory formation in a model system. Behavioural Brain Research, 2010, 214, 18-24.	1.2	51
98	Increase in excitability of RPeD11 results in memory enhancement of juvenile and adult Lymnaea stagnalis by predator-induced stress. Neurobiology of Learning and Memory, 2010, 94, 269-277.	1.0	23
99	`Different strokes for different folks': geographically isolated strains of <i>Lymnaea stagnalis</i> only respond to sympatric predators and have different memory forming capabilities. Journal of Experimental Biology, 2009, 212, 2237-2247.	0.8	50
100	Enhancing memory formation by altering protein phosphorylation balance. Neurobiology of Learning and Memory, 2008, 90, 544-552.	1.0	30
101	Electrophysiological and Behavioral Evidence Demonstrating That Predator Detection Alters Adaptive Behaviors in the Snail Lymnaea. Journal of Neuroscience, 2008, 28, 2726-2734.	1.7	76
102	Comparing memory-forming capabilities between laboratory-reared and wild <i>Lymnaea</i> : learning in the wild, a heritable component of snail memory. Journal of Experimental Biology, 2008, 211, 2807-2816.	0.8	25
103	Upside-Down Gliding of <i>Lymnaea </i> Biological Bulletin, 2008, 215, 272-279.	0.7	11
104	A clash of stressors and LTM formation. Communicative and Integrative Biology, 2008, 1, 125-127.	0.6	6
105	The perception of stress alters adaptive behaviours in <i>Lymnaea stagnalis</i> . Journal of Experimental Biology, 2008, 211, 1747-1756.	0.8	49
106	Crowding, an environmental stressor, blocks long-term memory formation in Lymnaea. Journal of Experimental Biology, 2008, 211, 2678-2688.	0.8	34
107	Predator detection in <i>Lymnaea stagnalis</i> i>. Journal of Experimental Biology, 2007, 210, 4150-4158.	0.8	82
108	One-trial conditioned taste aversion in Lymnaea: good and poor performers in long-term memory acquisition. Journal of Experimental Biology, 2007, 210, 1225-1237.	0.8	59

#	Article	IF	Citations
109	Stressful stimuli modulate memory formation in Lymnaea stagnalis. Neurobiology of Learning and Memory, 2007, 87, 391-403.	1.0	35
110	Reconsolidation and memory infidelity in Lymnaea. Neurobiology of Learning and Memory, 2007, 87, 547-560.	1.0	33
111	One-trial conditioning of aerial respiratory behaviour in Lymnaea stagnalis. Neurobiology of Learning and Memory, 2007, 88, 232-242.	1.0	30
112	Modulation of aerial respiratory behaviour in a pond snail. Respiratory Physiology and Neurobiology, 2006, 154, 61-72.	0.7	35
113	Canadian Association of Neurosciences Review: Learning at a Snail's Pace. Canadian Journal of Neurological Sciences, 2006, 33, 347-356.	0.3	30
114	Altered gene activity correlated with long-term memory formation of conditioned taste aversion inLymnaea. Journal of Neuroscience Research, 2006, 84, 1610-1620.	1.3	56
115	Taste discrimination in conditioned taste aversion of the pond snail Lymnaea stagnalis. Journal of Experimental Biology, 2006, 209, 826-833.	0.8	52
116	Electrophysiological Responses to Light of Neurons in the Eye and Statocyst of Lymnaea stagnalis. Journal of Neurophysiology, 2005, 93, 493-507.	0.9	34
117	Juvenile Lymnaea ventilate, learn and remember differently than do adult Lymnaea. Journal of Experimental Biology, 2005, 208, 1459-1467.	0.8	27
118	Boosting intermediate-term into long-term memory. Journal of Experimental Biology, 2005, 208, 1525-1536.	0.8	77
119	Operant conditioning of an in vitro CNS-pneumostome preparation of Lymnaea. Neurobiology of Learning and Memory, 2005, 84, 9-24.	1.0	36
120	Impairing Forgetting by Preventing New Learning and Memory Behavioral Neuroscience, 2005, 119, 787-796.	0.6	62
121	CREB in the pond snailLymnaea stagnalis: Cloning, gene expression, and function in identifiable neurons of the central nervous system. Journal of Neurobiology, 2004, 58, 455-466.	3.7	83
122	A molluscan model system in the search for the engram. Journal of Physiology (Paris), 2003, 97, 69-76.	2.1	45
123	Cooling blocks ITM and LTM formation and preserves memory. Neurobiology of Learning and Memory, 2003, 80, 130-139.	1.0	50
124	Forgetting and the extension of memory inLymnaea. Journal of Experimental Biology, 2003, 206, 71-77.	0.8	39
125	Long-Term Memory Survives Nerve Injury and the Subsequent Regeneration Process. Learning and Memory, 2003, 10, 44-54.	0.5	29
126	Associative learning and memory in Lymnaea stagnalis: how well do they remember?. Journal of Experimental Biology, 2003, 206, 2097-2103.	0.8	91

#	Article	IF	Citations
127	Intermediate and long-term memories of associative learning are differentially affected by transcriptionversustranslation blockers inLymnaea. Journal of Experimental Biology, 2003, 206, 1605-1613.	0.8	99
128	Electrophysiological Differences in the CPG Aerial Respiratory Behavior Between Juvenile and Adult Lymnaea. Journal of Neurophysiology, 2003, 90, 983-992.	0.9	57
129	Reconsolidation of a Long-Term Memory in <i>Lymnaea</i> Requires New Protein and RNA Synthesis and the Soma of Right Pedal Dorsal 1. Journal of Neuroscience, 2003, 23, 8034-8040.	1.7	227
130	Extinction Requires New RNA and Protein Synthesis and the Soma of the Cell Right Pedal Dorsal 1 inLymnaea stagnalis. Journal of Neuroscience, 2003, 23, 9842-9851.	1.7	120
131	Context Extinction and Associative Learning in Lymnaea. Neurobiology of Learning and Memory, 2002, 78, 23-34.	1.0	36
132	Changes in the Activity of a CPG Neuron After the Reinforcement of an Operantly Conditioned Behavior in <i>Lymnaea</i> Journal of Neurophysiology, 2002, 88, 1915-1923.	0.9	86
133	The Soma of RPeD1 Must Be Present for Long-Term Memory Formation of Associative Learning in <i>Lymnaea</i> . Journal of Neurophysiology, 2002, 88, 1584-1591.	0.9	130
134	Nitric oxide mediates metabolism as well as respiratory and cardiac responses to hypoxia in the snail lymnaea stagnalis. Journal of Experimental Zoology Part A, Comparative Experimental Biology, 2002, 295A, 37-46.	1.3	17
135	Gone but not forgotten: the lingering effects of intermediate-term memory on the persistence of long-term memory. Journal of Experimental Biology, 2002, 205, 131-140.	0.8	21
136	Metabolic Consequences of Hypdxic Conditioning in Lymnaea Stagnalis. Advances in Experimental Medicine and Biology, 2001, 499, 225-229.	0.8	3
137	Target cell contact suppresses neurite outgrowth from soma-soma pairedLymnaea neurons. , 2000, 42, 357-369.		21
138	Different extrinsic trophic factors regulate neurite outgrowth and synapse formation between identifiedLymnaea neurons. Journal of Neurobiology, 2000, 44, 20-30.	3.7	22
139	Neural Changes after Operant Conditioning of the Aerial Respiratory Behavior in <i>Lymnaea stagnalis</i> Journal of Neuroscience, 1999, 19, 1836-1843.	1.7	133
140	The dual effect of enflurane on gill withdrawal reflex of Aplysia. Invertebrate Neuroscience, 1996, 2, 35-40.	1.8	2
141	Rhythmic activities of isolated and clustered pacemaker neurons and photoreceptors of Aplysia retina in culture., 1996, 31, 16-28.		5
142	Differential expression of the electrophysiological responses to axotomy in bullfrog sympathetic neurons following nerve injury at 15ŰC. Restorative Neurology and Neuroscience, 1995, 8, 137-143.	0.4	0
143	Effects of enflurane on gill withdrawal behaviors and the ability of gill motor neurones to elicit gill Contractions in Aplysia. Journal of Anesthesia, 1993, 7, 434-441.	0.7	2
144	The Perfusion of the Endogenous Neuropeptide, Phe-Met-Arg-Phe-NH2(FMRFamide) through the Gill of Aplysia Potentiates the Gill Withdrawal Reflex Evoked by Siphon Stimulation and Prevents its Habituation. Journal of Neuroendocrinology, 1989, 1, 29-34.	1.2	4

#	Article	IF	CITATION
145	Regeneration restores some of the altered electrical properties of axotomized bullfrog B-cells. Journal of Neurobiology, 1988, 19, 357-372.	3.7	17
146	Sperm sharing in Biomphalaria snails. Nature, 1987, 325, 737-738.	13.7	6
147	In vitro classical conditioning of a gill withdrawal reflex inAplysia: Neural correlates and possible neural mechanisms. Journal of Neurobiology, 1986, 17, 83-101.	3.7	28
148	Transient depletion of serotonin in the nervous system of Helisoma. Journal of Neurobiology, 1986, 17, 431-447.	3.7	43
149	Cholinergic receptors in theAplysia gill. Journal of Neurobiology, 1984, 15, 325-332.	3.7	11
150	Transfer of habituation in Aplysia: Contribution of heterosynaptic pathways in habituation of the gill-withdrawal reflex. Journal of Neurobiology, 1984, 15, 395-411.	3.7	18
151	The squishy revisited: A call for ethological affirmative action. Behavioral and Brain Sciences, 1984, 7, 394-394.	0.4	1
152	An Ethogram of the Sea Slug, <i>Navanax inermis</i> (Gastropoda, Opisthobranchia). Zeitschrift FÃ $\frac{1}{4}$ r Tierpsychologie, 1984, 65, 327-345.	0.2	21
153	Modulation of theAplysia gill withdrawal reflex by dopamine. Journal of Neurobiology, 1983, 14, 271-284.	3.7	30
154	Viewpoint: What the Marine Mollusc Aplysia Can Tell the Neurologist About Behavioral Neurophysiology. Canadian Journal of Neurological Sciences, 1981, 8, 275-280.	0.3	10
155	Control of gill reflex habituation and the rate of EPSP decrement of L7 by a common source in the CNS ofAplysia. Journal of Neurobiology, 1980, 11, 425-433.	3.7	22
156	CNS control over gill reflex behaviors inAplysia: Satiation causes an increase in the suppressive	3.7	30