
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1929857/publications.pdf Version: 2024-02-01

Δηριανία Τραρανί

#	Article	IF	CITATIONS
1	Solid Lipid Nanoparticles Administering Antioxidant Grape Seed-Derived Polyphenol Compounds: A Potential Application in Aquaculture. Molecules, 2022, 27, 344.	3.8	9
2	Novel Nanoparticles Based on N,O-Carboxymethyl Chitosan-Dopamine Amide Conjugate for Nose-to-Brain Delivery. Pharmaceutics, 2022, 14, 147.	4.5	13
3	Cyto/Biocompatibility of Dopamine Combined with the Antioxidant Grape Seed-Derived Polyphenol Compounds in Solid Lipid Nanoparticles. Molecules, 2021, 26, 916.	3.8	27
4	Erythrocytes and Nanoparticles: New Therapeutic Systems. Applied Sciences (Switzerland), 2021, 11, 2173.	2.5	16
5	Nose-to-brain delivery: A comparative study between carboxymethyl chitosan based conjugates of dopamine. International Journal of Pharmaceutics, 2021, 599, 120453.	5.2	12
6	Oxidized Alginate Dopamine Conjugate: In Vitro Characterization for Nose-to-Brain Delivery Application. Materials, 2021, 14, 3495.	2.9	15
7	Dopamine-loaded lipid based nanocarriers for intranasal administration of the neurotransmitter: A comparative study. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 189-200.	4.3	15
8	Anti-angiogenic activity of uncoated- and N,O-carboxymethyl-chitosan surface modified-Gelucire® 50/13 based solid lipid nanoparticles for oral delivery of curcumin. Journal of Drug Delivery Science and Technology, 2020, 56, 101494.	3.0	15
9	Synthesis and characterization of novel chitosan-dopamine or chitosan-tyrosine conjugates for potential nose-to-brain delivery. International Journal of Pharmaceutics, 2020, 589, 119829.	5.2	25
10	Combination of inulin and β-cyclodextrin properties for colon delivery of hydrophobic drugs. International Journal of Pharmaceutics, 2020, 589, 119861.	5.2	14
11	In vitro investigations on dopamine loaded Solid Lipid Nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 2020, 185, 113257.	2.8	30
12	Solid lipid nanoparticles made of self-emulsifying lipids for efficient encapsulation of hydrophilic substances. AIP Conference Proceedings, 2019, , .	0.4	8
13	Drug delivery of rifampicin by natural micelles based on inulin: Physicochemical properties, antibacterial activity and human macrophages uptake. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 250-258.	4.3	36
14	Harnessing Stem Cells and Neurotrophic Factors with Novel Technologies in the Treatment of Parkinson's Disease. Current Stem Cell Research and Therapy, 2019, 14, 549-569.	1.3	13
15	In vitro and ex vivo studies on diltiazem hydrochloride-loaded microsponges in rectal gels for chronic anal fissures treatment. International Journal of Pharmaceutics, 2019, 557, 53-65.	5.2	19
16	Effect of Methyl-β-Cyclodextrin on the antimicrobial activity of a new series of poorly water-soluble benzothiazoles. Carbohydrate Polymers, 2019, 207, 720-728.	10.2	31
17	Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. International Journal of Pharmaceutics, 2018, 545, 378-388.	5.2	42
18	pH-sensitive inulin-based nanomicelles for intestinal site-specific and controlled release of celecoxib. Carbohydrate Polymers, 2018, 181, 570-578.	10.2	37

#	Article	IF	CITATIONS
19	Colloidal nanosystems from natural and renewable resources. AIP Conference Proceedings, 2018, , .	0.4	1
20	Protection of dopamine towards autoxidation reaction by encapsulation into non-coated- or chitosan- or thiolated chitosan-coated-liposomes. Colloids and Surfaces B: Biointerfaces, 2018, 170, 11-19.	5.0	27
21	In vitro efficacy of silk sericin microparticles and platelet lysate for intervertebral disk regeneration. International Journal of Biological Macromolecules, 2018, 118, 792-799.	7.5	28
22	A Micellar-Hydrogel Nanogrid from a UV Crosslinked Inulin Derivative for the Simultaneous Delivery of Hydrophobic and Hydrophilic Drugs. Pharmaceutics, 2018, 10, 97.	4.5	10
23	Glutathione-loaded solid lipid nanoparticles based on Gelucire® 50/13: Spectroscopic characterization and interactions with fish cells. Journal of Drug Delivery Science and Technology, 2018, 47, 359-366.	3.0	17
24	Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1245-1254.	3.3	41
25	A novel injectable formulation of 6-fluoro- l -DOPA imaging agent for diagnosis of neuroendocrine tumors and Parkinson's disease. International Journal of Pharmaceutics, 2017, 519, 304-313.	5.2	13
26	In vitro evaluation of glycol chitosan based formulations as oral delivery systems for efflux pump inhibition. Carbohydrate Polymers, 2017, 166, 73-82.	10.2	28
27	Mucoadhesive properties of low molecular weight chitosan- or glycol chitosan- and corresponding thiomer-coated poly(isobutylcyanoacrylate) core-shell nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 315-323.	4.3	42
28	Spectroscopic Characterization of Copper-Chitosan Nanoantimicrobials Prepared by Laser Ablation Synthesis in Aqueous Solutions. Nanomaterials, 2017, 7, 6.	4.1	19
29	Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells. Food Chemistry, 2016, 210, 276-285.	8.2	23
30	Inulin based micelles loaded with curcumin or celecoxib with effective anti-angiogenic activity. European Journal of Pharmaceutical Sciences, 2016, 93, 141-146.	4.0	49
31	Glutathione loaded solid lipid nanoparticles: Preparation and in vitro evaluation asÂdelivery systems of the antioxidant peptide to immunocompetent fish cells. Journal of Cellular Biotechnology, 2016, 2, 1-14.	0.5	7
32	Laser Ablation Synthesis in Solution of Nanoantimicrobials for Food Packaging Applications. Materials Research Society Symposia Proceedings, 2015, 1804, 37-42.	0.1	2
33	Enzyme controlled release of celecoxib from inulin based nanomicelles. Journal of Cellular Biotechnology, 2015, 1, 107-118.	0.5	8
34	Inulin- <scp>d</scp> -α-Tocopherol Succinate (INVITE) Nanomicelles as a Platform for Effective Intravenous Administration of Curcumin. Biomacromolecules, 2015, 16, 550-557.	5.4	44
35	In vitro characterization of 6-Coumarin loaded solid lipid nanoparticles and their uptake by immunocompetent fish cells. Colloids and Surfaces B: Biointerfaces, 2015, 127, 79-88.	5.0	26
36	Nanocomplexes for gene therapy of respiratory diseases: Targeting and overcoming the mucus barrier. Pulmonary Pharmacology and Therapeutics, 2015, 34, 8-24.	2.6	43

#	Article	IF	CITATIONS
37	Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 180-193.	4.3	81
38	Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 400-416.	4.3	221
39	Mesenchymal stromal cells loading curcumin-INVITE-micelles: A drug delivery system for neurodegenerative diseases. Colloids and Surfaces B: Biointerfaces, 2015, 125, 300-308.	5.0	61
40	Cationic Polymers for Gene Delivery into Mesenchymal Stem Cells as a Novel Approach to Regenerative Medicine. RSC Polymer Chemistry Series, 2014, , 386-437.	0.2	0
41	α-Tocopherol/chitosan-based nanoparticles: characterization and preliminary investigations for emulsion systems application. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	7
42	Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants. Carbohydrate Polymers, 2014, 110, 173-182.	10.2	60
43	Mucoadhesive Properties and Interaction with P-Glycoprotein (P-gp) of Thiolated-Chitosans and -Glycol Chitosans and Corresponding Parent Polymers: A Comparative Study. Biomacromolecules, 2014, 15, 882-893.	5.4	35
44	Nanocarriers for Respiratory Diseases Treatment: Recent Advances and Current Challenges. Current Topics in Medicinal Chemistry, 2014, 14, 1133-1147.	2.1	14
45	Targeting of the Translocator Protein 18 kDa (TSPO): A Valuable Approach for Nuclear and Optical Imaging of Activated Microglia. Bioconjugate Chemistry, 2013, 24, 1415-1428.	3.6	52
46	Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. International Journal of Pharmaceutics, 2013, 447, 115-123.	5.2	77
47	Development and analytical characterization of vitamin(s)-loaded chitosan nanoparticles for potential food packaging applications. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	31
48	Ciprofloxacin-loaded Chitosan Nanoparticles as Titanium Coatings: A Valuable Strategy to Prevent Implant-associated Infections. Nano Biomedicine and Engineering, 2012, 4, .	0.9	17
49	Novel codrugs with GABAergic activity for dopamine delivery in the brain. International Journal of Pharmaceutics, 2012, 437, 221-231.	5.2	36
50	Recent advances in ligand targeted therapy. Journal of Drug Targeting, 2012, 20, 1-22.	4.4	80
51	Griseofulvin/Carrier Blends: Application of Partial Least Squares (PLS) Regression Analysis for Estimating the Factors Affecting the Dissolution Efficiency. AAPS PharmSciTech, 2011, 12, 1019-1030.	3.3	8
52	Methotrexate-Loaded Chitosan- and Glycolchitosan-Based Nanoparticles: A Promising Strategy for the Administration of the Anticancer Drug to Brain Tumors. AAPS PharmSciTech, 2011, 12, 1302-1311.	3.3	61
53	Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. International Journal of Pharmaceutics, 2011, 419, 296-307.	5.2	183
54	New Fluorescent Probes Targeting the Mitochondrial-Located Translocator Protein 18ÂkDa (TSPO) as Activated Microglia Imaging Agents. Pharmaceutical Research, 2011, 28, 2820-2832.	3.5	22

#	Article	IF	CITATIONS
55	Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization. Analytical and Bioanalytical Chemistry, 2011, 400, 1997-2002.	3.7	62
56	Translocator Protein (TSPO) Ligandâ~'Ara-C (Cytarabine) Conjugates as a Strategy To Deliver Antineoplastic Drugs and To Enhance Drug Clinical Potential. Molecular Pharmaceutics, 2010, 7, 2255-2269.	4.6	37
57	A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptidesâ~†. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 26-32.	4.3	139
58	Recent Advances in Medicinal Chemistry and Pharmaceutical Technology- Strategies for Drug Delivery to the Brain. Current Topics in Medicinal Chemistry, 2009, 9, 182-196.	2.1	95
59	The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. International Journal of Pharmaceutics, 2009, 375, 97-106.	5.2	106
60	The use of Eudragit® RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 509-520.	4.3	65
61	New strategies to deliver anticancer drugs to brain tumors. Expert Opinion on Drug Delivery, 2009, 6, 1017-1032.	5.0	179
62	Frog intestinal sac as an in vitro method for the assessment of intestinal permeability in humans: Application to carrier transported drugs. International Journal of Pharmaceutics, 2008, 352, 182-188.	5.2	10
63	Relationship between dissolution efficiency of Oxazepam/carrier blends and drug and carrier molecular descriptors using multivariate regression analysis. International Journal of Pharmaceutics, 2008, 358, 60-68.	5.2	13
64	Comparative effects of some hydrophilic excipients on the rate of gabapentin and baclofen lactamization in lyophilized formulations. International Journal of Pharmaceutics, 2007, 332, 98-106.	5.2	18
65	Eudragit RS 100 microparticles containing 2-hydroxypropyl-β-cyclodextrin and glutathione: Physicochemical characterization, drug release and transport studies. European Journal of Pharmaceutical Sciences, 2007, 30, 64-74.	4.0	61
66	Effect of cyclodextrins on physico-chemical and release properties of Eudragit RS 100 microparticles containing glutathione. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 425-432.	1.6	15
67	Structureâ^'Activity Relationships and Effects on Neuroactive Steroid Synthesis in a Series of 2-Phenylimidazo[1,2-a]pyridineacetamide Peripheral Benzodiazepine Receptors Ligands. Journal of Medicinal Chemistry, 2005, 48, 292-305.	6.4	72
68	Frog intestinal sac: A new in vitro method for the assessment of intestinal permeability**Part of this article was presented at the European Conference on Drug Delivery and Pharmaceutical Technology, Sevilla, Spain, May 10–12, 2004 Journal of Pharmaceutical Sciences, 2004, 93, 2909-2919.	3.3	35
69	Evaluation of new propofol aqueous solutions for intravenous anesthesia. International Journal of Pharmaceutics, 2004, 278, 91-98.	5.2	40