Nishat Sultana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1929828/publications.pdf

Version: 2024-02-01

17 papers	794 citations	12 h-index	17 g-index
17	17	17	1391
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Direct reprogramming induces vascular regeneration post muscle ischemic injury. Molecular Therapy, 2021, 29, 3042-3058.	8.2	21
2	In Vitro Synthesis of Modified RNA for Cardiac Gene Therapy. Methods in Molecular Biology, 2021, 2158, 281-294.	0.9	8
3	Delivery of Modified mRNA in a Myocardial Infarction Mouse Model. Journal of Visualized Experiments, 2020, , .	0.3	3
4	Altering Sphingolipid Metabolism Attenuates Cell Death and Inflammatory Response After Myocardial Infarction. Circulation, 2020, 141, 916-930.	1.6	84
5	Optimization of 5′ Untranslated Region of Modified mRNA for Use in Cardiac or Hepatic Ischemic Injury. Molecular Therapy - Methods and Clinical Development, 2020, 17, 622-633.	4.1	26
6	Optimizing Modified mRNA InÂVitro Synthesis Protocol for Heart Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2019, 14, 300-305.	4.1	34
7	Cardiac Sca-1 ⁺ Cells Are Not Intrinsic Stem Cells for Myocardial Development, Renewal, and Repair. Circulation, 2018, 138, 2919-2930.	1.6	37
8	Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development. Journal of Biological Chemistry, 2018, 293, 9162-9175.	3.4	30
9	Optimizing Cardiac Delivery of Modified mRNA. Molecular Therapy, 2017, 25, 1306-1315.	8.2	84
10	Synthesis of Modified mRNA for Myocardial Delivery. Methods in Molecular Biology, 2017, 1521, 127-138.	0.9	20
11	Insulin-Like Growth Factor 1 Receptor-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury. Circulation, 2017, 135, 59-72.	1.6	74
12	A series of robust genetic indicators for definitive identification of cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2016, 97, 278-285.	1.9	12
13	Generation of a tamoxifen inducible <i>Tnnt2</i> ^{<i>MerCreMer</i>} knockâ€in mouse model for cardiac studies. Genesis, 2015, 53, 377-386.	1.6	9
14	Resident c-kit+ cells in the heart are not cardiac stem cells. Nature Communications, 2015, 6, 8701.	12.8	268
15	A Murine Myh6MerCreMer Knock-In Allele Specifically Mediates Temporal Genetic Deletion in Cardiomyocytes after Tamoxifen Induction. PLoS ONE, 2015, 10, e0133472.	2.5	7
16	Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development. Developmental Biology, 2014, 390, 68-79.	2.0	62
17	Smad4 Regulates Ureteral Smooth Muscle Cell Differentiation during Mouse Embryogenesis. PLoS ONE, 2014, 9, e104503.	2.5	15