Russell A Howard

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1929822/russell-a-howard-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

228 23,053 149 74 h-index g-index citations papers 6.27 240 25,044 5.2 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
228	Parker Solar Probe Imaging of the Night Side of Venus. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9	1
227	Pristine PSP/WISPR Observations of the Circumsolar Dust Ring near Venus's Orbit. <i>Astrophysical Journal</i> , 2021 , 910, 157	4.7	1
226	PSP/WISPR observations of dust density depletion near the Sun. <i>Astronomy and Astrophysics</i> , 2021 , 650, A28	5.1	4
225	In-flight Calibration and Data Reduction for the WISPR Instrument On Board the PSP Mission. <i>Solar Physics</i> , 2021 , 296, 1	2.6	2
224	Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles. <i>Solar Physics</i> , 2020 , 295, 1	2.6	2
223	Modeling the Early Evolution of a Slow Coronal Mass Ejection Imaged by the Parker Solar Probe. <i>Astrophysical Journal, Supplement Series</i> , 2020 , 246, 72	8	9
222	The LASCO Coronal Brightness Index. <i>Solar Physics</i> , 2020 , 295, 1	2.6	3
221	Parker Solar Probe Observations of a Dust Trail in the Orbit of (3200) Phaethon. <i>Astrophysical Journal, Supplement Series</i> , 2020 , 246, 64	8	9
220	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. <i>Astrophysical Journal, Supplement Series</i> , 2020 , 246, 37	8	32
219	Detailed Imaging of Coronal Rays with the Parker Solar Probe. <i>Astrophysical Journal, Supplement Series</i> , 2020 , 246, 60	8	8
218	WISPR Imaging of a Pristine CME. Astrophysical Journal, Supplement Series, 2020, 246, 25	8	13
217	Morphological Reconstruction of a Small Transient Observed by Parker Solar Probe on 2018 November 5. <i>Astrophysical Journal, Supplement Series</i> , 2020 , 246, 28	8	9
216	The Solar Orbiter Heliospheric Imager (SoloHI). Astronomy and Astrophysics, 2020, 642, A13	5.1	21
215	Models and data analysis tools for the Solar Orbiter mission. <i>Astronomy and Astrophysics</i> , 2020 , 642, A2	5.1	26
214	Coordination within the remote sensing payload on the Solar Orbiter mission. <i>Astronomy and Astrophysics</i> , 2020 , 642, A6	5.1	18
213	The Solar Orbiter Science Activity Plan. Astronomy and Astrophysics, 2020, 642, A3	5.1	30
212	Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories. <i>Astronomy and Astrophysics</i> , 2020 , 642, A4	5.1	18

(2016-2020)

211	The Solar Orbiter mission. <i>Astronomy and Astrophysics</i> , 2020 , 642, A1	5.1	173
210	Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe. <i>Solar Physics</i> , 2020 , 295, 1	2.6	3
209	Tomography of the Solar Corona with the Wide-Field Imager for the Parker Solar Probe. <i>Solar Physics</i> , 2019 , 294, 1	2.6	2
208	Comparing extrapolations of the coronal magnetic field structure at 2.5R?with multi-viewpoint coronagraphic observations. <i>Astronomy and Astrophysics</i> , 2019 , 627, A9	5.1	4
207	Near-Sun observations of an F-corona decrease and K-corona fine structure. <i>Nature</i> , 2019 , 576, 232-236	50.4	45
206	Evolution of CME Mass in the Corona. <i>Solar Physics</i> , 2018 , 293, 1	2.6	15
205	The Highly Structured Outer Solar Corona. <i>Astrophysical Journal</i> , 2018 , 862, 18	4.7	61
204	Stray light analysis and testing of the SoloHI (solar orbiter heliospheric imager) and WISPR (wide field imager for solar probe) heliospheric imagers 2018 ,		1
203	Evidence for a Circumsolar Dust Ring Near Mercury Orbit. Astrophysical Journal, 2018, 868, 74	4.7	12
202	Characterization of the White-light Brightness of the F-corona between 50 and 240 Elongation. <i>Astrophysical Journal</i> , 2018 , 862, 168	4.7	15
201	Measuring the Flattening of the Outer F-corona Using STEREO-A/HI-1 Images. <i>Astrophysical Journal</i> , 2018 , 864, 29	4.7	4
200	A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I.STEREO/HI-1 Heliospheric Images. <i>Astrophysical Journal</i> , 2017 , 839, 68	4.7	14
199	A STEREO Survey of Magnetic Cloud Coronal Mass Ejections Observed at Earth in 2008 2 012. <i>Astrophysical Journal, Supplement Series</i> , 2017 , 229, 29	8	45
198	The Evolution of the Surface of Symmetry of the Interplanetary Dust from 24년to 5년Elongation. <i>Astrophysical Journal</i> , 2017 , 848, 57	4.7	8
197	Is There a CME Rate Floor? CME and Magnetic Flux Values for the Last Four Solar Cycle Minima. <i>Astrophysical Journal</i> , 2017 , 851, 142	4.7	10
196	IMAGING PROMINENCE ERUPTIONS OUT TO 1 AU. Astrophysical Journal, 2016 , 816, 67	4.7	25
195	The first super geomagnetic storm of solar cycle 24: The St. Patrick day event (17 March 2015) Earth, Planets and Space, 2016 , 68,	2.9	51
194	Numerical simulation of multiple CME-driven shocks in the month of 2011 September. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 1839-1856	2.6	15

193	The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients. <i>Space Science Reviews</i> , 2016 , 204, 49-82	7·5	303
192	The Solar Probe Plus Mission: Humanity First Visit to Our Star. Space Science Reviews, 2016, 204, 7-48	7.5	488
191	The Wide-Field Imager for Solar Probe Plus (WISPR). Space Science Reviews, 2016, 204, 83-130	7.5	90
190	Update of the Photometric Calibration of the LASCO-C2 Coronagraph Using Stars. <i>Solar Physics</i> , 2015 , 290, 997-1009	2.6	10
189	Design and modelisation of ASPIICS optics 2015 ,		8
188	Recent white-light coronagraphs at the Naval Research Laboratory. <i>Applied Optics</i> , 2015 , 54, F298-302	0.2	
187	Seeing the corona with the solar probe plus mission: the wide-field imager for solar probe+ (WISPR) 2013 ,		4
186	The solar and heliospheric imager (SoloHI) instrument for the solar orbiter mission 2013,		13
185	Development and test of an active pixel sensor detector for heliospheric imager on solar orbiter and solar probe plus 2013 ,		5
184	Connecting Coronal Mass Ejections and Magnetic Clouds: A Case Study Using an Event from 22 June 2009. <i>Solar Physics</i> , 2012 , 281, 369	2.6	7
183	Three-Dimensional Properties of Coronal Mass Ejections from STEREO/SECCHI Observations. <i>Solar Physics</i> , 2012 , 281, 167	2.6	27
182	A CORONAL HOLE'S EFFECTS ON CORONAL MASS EJECTION SHOCK MORPHOLOGY IN THE INNER HELIOSPHERE. <i>Astrophysical Journal</i> , 2012 , 755, 43	4.7	46
181	How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs. <i>Solar Physics</i> , 2012 , 284, 179	2.6	159
180	EMPIRICAL RECONSTRUCTION AND NUMERICAL MODELING OF THE FIRST GEOEFFECTIVE CORONAL MASS EJECTION OF SOLAR CYCLE 24. <i>Astrophysical Journal</i> , 2011 , 729, 70	4.7	49
179	Straylight-Rejection Performance of the STEREO HI Instruments. <i>Solar Physics</i> , 2011 , 271, 197-218	2.6	9
178	Determination of CME Trajectories by Stereoscopic Analysis of STEREO/SECCHI Data 2010 ,		5
177	INTERPLANETARY SHOCKS LACKING TYPE II RADIO BURSTS. Astrophysical Journal, 2010 , 710, 1111-112	2 6 4.7	76
176	THE THREE-DIMENSIONAL MORPHOLOGY OF A COROTATING INTERACTION REGION IN THE INNER HELIOSPHERE. <i>Astrophysical Journal Letters</i> . 2010 . 708, L89-L94	7.9	17

(2009-2010)

175	Intermittent release of transients in the slow solar wind: 1. Remote sensing observations. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		62
174	COMPREHENSIVE ANALYSIS OF CORONAL MASS EJECTION MASS AND ENERGY PROPERTIES OVER A FULL SOLAR CYCLE. <i>Astrophysical Journal</i> , 2010 , 722, 1522-1538	4.7	170
173	On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data. <i>Annales Geophysicae</i> , 2010 , 28, 203-215	2	96
172	RECONSTRUCTING THE MORPHOLOGY OF AN EVOLVING CORONAL MASS EJECTION. Astrophysical Journal, 2010 , 715, 1524-1532	4.7	47
171	The SOHO/LASCO CME Catalog. Earth, Moon and Planets, 2009, 104, 295-313	0.6	371
170	The Heliospheric Imagers Onboard the STEREO Mission. <i>Solar Physics</i> , 2009 , 254, 387-445	2.6	261
169	Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data. Solar Physics, 2009, 256, 111-	-13.6	335
168	Study of CME Propagation in the Inner Heliosphere: SOHO LASCO, SMEI and STEREO HI Observations of the January 2007 Events. <i>Solar Physics</i> , 2009 , 256, 239-267	2.6	51
167	Two Years of the STEREO Heliospheric Imagers. <i>Solar Physics</i> , 2009 , 256, 219-237	2.6	42
166	Solar Wind Sources in the Late Declining Phase of Cycle 23: Effects of the Weak Solar Polar Field on High Speed Streams. <i>Solar Physics</i> , 2009 , 256, 285-305	2.6	57
165	STEREO SECCHI and S/WAVES Observations of Spacecraft Debris Caused by Micron-Size Interplanetary Dust Impacts. <i>Solar Physics</i> , 2009 , 256, 475-488	2.6	33
164	Stereoscopic Analysis of the 19 May 2007 Erupting Filament. Solar Physics, 2009, 256, 57-72	2.6	73
163	Relation Between Type II Bursts and CMEs Inferred from STEREO Observations. <i>Solar Physics</i> , 2009 , 259, 227-254	2.6	124
162	Reconstructing the 3D Morphology of the 17 May 2008 CME. Solar Physics, 2009, 259, 163-178	2.6	38
161	In Situ Observations of Solar Wind Stream Interface Evolution. <i>Solar Physics</i> , 2009 , 259, 323-344	2.6	17
160	The Impact of Geometry on Observations of CME Brightness and Propagation. <i>Solar Physics</i> , 2009 , 259, 179-197	2.6	10
159	A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		61
158	EUV WAVE REFLECTION FROM A CORONAL HOLE. <i>Astrophysical Journal</i> , 2009 , 691, L123-L127	4.7	125
158	EUV WAVE REFLECTION FROM A CORONAL HOLE. Astrophysical Journal, 2009 , 691, L123-L127	4.7	125

157	AN EMPIRICAL RECONSTRUCTION OF THE 2008 APRIL 26 CORONAL MASS EJECTION. <i>Astrophysical Journal</i> , 2009 , 702, 901-910	4.7	70
156	COMPREHENSIVE OBSERVATIONS OF A SOLAR MINIMUM CORONAL MASS EJECTION WITH THESOLAR TERRESTRIAL RELATIONS OBSERVATORY. <i>Astrophysical Journal</i> , 2009 , 694, 707-717	4.7	34
155	STEREOSCOPIC POLAR PLUME RECONSTRUCTIONS FROMSTEREO/SECCHI IMAGES. <i>Astrophysical Journal</i> , 2009 , 700, 292-301	4.7	24
154	Radio-Quiet Fast and Wide Coronal Mass Ejections. <i>Astrophysical Journal</i> , 2008 , 674, 560-569	4.7	65
153	A Fresh View of the Extreme-Ultraviolet Corona from the Application of a New Image-Processing Technique. <i>Astrophysical Journal</i> , 2008 , 674, 1201-1206	4.7	63
152	SECCHI Observations of the Sun's Garden-Hose Density Spiral. <i>Astrophysical Journal</i> , 2008 , 674, L109-L1	1427	55
151	Spatial Relationship between Solar Flares and Coronal Mass Ejections. <i>Astrophysical Journal</i> , 2008 , 673, 1174-1180	4.7	59
150	Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. <i>Annales Geophysicae</i> , 2008 , 26, 3033-3047	2	100
149	First Imaging of Coronal Mass Ejections in the Heliosphere Viewed from Outside the Sun Œarth Line. <i>Solar Physics</i> , 2008 , 247, 171-193	2.6	85
148	A Quick Method for Estimating the Propagation Direction of Coronal Mass Ejections Using STEREO-COR1 Images. <i>Solar Physics</i> , 2008 , 252, 385-396	2.6	55
147	Theoretical modeling for the stereo mission. <i>Space Science Reviews</i> , 2008 , 136, 565-604	7.5	36
146	Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). <i>Space Science Reviews</i> , 2008 , 136, 67-115	7.5	1171
145	Heliospheric Images of the Solar Wind at Earth. Astrophysical Journal, 2008, 675, 853-862	4.7	116
144	Theoretical Modeling for the STEREO Mission 2008 , 565-604		1
143	Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) 2008, 67-115		3
142	Analysis of the comparative responses of SMEI and LASCO 2007,		16
141	First Stereoscopic Coronal Loop Reconstructions from STEREO SECCHI Images. <i>Astrophysical Journal</i> , 2007 , 671, L205-L208	4.7	56
140	Discovery of the Atomic Iron Tail of Comet M c Naught Using the Heliospheric Imager on STEREO. <i>Astrophysical Journal</i> , 2007 , 661, L93-L96	4.7	42

(2004-2007)

139	First Direct Observation of the Interaction between a Comet and a Coronal Mass Ejection Leading to a Complete Plasma Tail Disconnection. <i>Astrophysical Journal</i> , 2007 , 668, L79-L82	4.7	44	
138	Modeling of Flux Rope Coronal Mass Ejections. <i>Astrophysical Journal</i> , 2006 , 652, 763-773	4.7	319	
137	Calibration of the Soho/Lasco C3 White Light Coronagraph. Solar Physics, 2006, 233, 331-372	2.6	49	
136	Electron Density Modeling of a Streamer Using LASCO Data of 2004 January and February. <i>Astrophysical Journal</i> , 2006 , 642, 523-532	4.7	32	
135	Different Power-Law Indices in the Frequency Distributions of Flares with and without Coronal Mass Ejections. <i>Astrophysical Journal</i> , 2006 , 650, L143-L146	4.7	163	
134	The Proper Treatment of Coronal Mass Ejection Brightness: A New Methodology and Implications for Observations. <i>Astrophysical Journal</i> , 2006 , 642, 1216-1221	4.7	154	
133	Venus phase function and forward scattering from H2SO4. <i>Icarus</i> , 2006 , 182, 10-22	3.8	29	
132	Photometric Calibration of the Lasco-C3 Coronagraph Using Stars. <i>Solar Physics</i> , 2006 , 233, 155-169	2.6	23	
131	Multi-Wavelength Observations of CMEs and Associated Phenomena. <i>Space Science Reviews</i> , 2006 , 123, 341-382	7.5	48	
130	Multi-Wavelength Observations of CMEs and Associated Phenomena. <i>Space Sciences Series of ISSI</i> , 2006 , 341-382	0.1		
129	Solar source of the largest geomagnetic storm of cycle 23. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-r	n/ ą .9	83	
128	Coronal mass ejections and other extreme characteristics of the 2003 October November solar eruptions. <i>Journal of Geophysical Research</i> , 2005 , 110,		124	
127	Visibility of coronal mass ejections as a function of flare location and intensity. <i>Journal of Geophysical Research</i> , 2005 , 110,		113	
126	Type II radio bursts and energetic solar eruptions. Journal of Geophysical Research, 2005, 110,		99	
125	An empirical model to predict the 1-AU arrival of interplanetary shocks. <i>Advances in Space Research</i> , 2005 , 36, 2289-2294	2.4	78	
124	EUVI: the STEREO-SECCHI extreme ultraviolet imager 2004 , 5171, 111		347	
123	A catalog of white light coronal mass ejections observed by the SOHO spacecraft. <i>Journal of Geophysical Research</i> , 2004 , 109,		741	
122	Influence of coronal mass ejection interaction on propagation of interplanetary shocks. <i>Journal of Geophysical Research</i> , 2004 , 109,		98	

121	Intensity variation of large solar energetic particle events associated with coronal mass ejections. Journal of Geophysical Research, 2004 , 109,		217
120	An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. <i>Nature</i> , 2004 , 432, 78-81	50.4	114
119	A Study of the Kinematic Evolution of Coronal Mass Ejections. <i>Astrophysical Journal</i> , 2004 , 604, 420-432	4.7	195
118	MAGRITTE: an instrument suite for the solar atmospheric imaging assembly (AIA) aboard the Solar Dynamics Observatory 2004 ,		4
117	CME Interaction and the Intensity of Solar Energetic Particle Events. <i>Proceedings of the International Astronomical Union</i> , 2004 , 2004, 367-373	0.1	6
116	LASCO Observations Of The K-Corona From Solar Minimum To Solar Maximum And Beyond. <i>AIP Conference Proceedings</i> , 2003 ,	О	1
115	Direct Detection of a Coronal Mass Ejection Associated Shock in Large Angle and Spectrometric Coronagraph Experiment White-Light Images. <i>Astrophysical Journal</i> , 2003 , 598, 1392-1402	4.7	179
114	Design and tests for the heliospheric imager of the STEREO mission 2003,		9
113	Coronal Mass Ejections and Solar Polarity Reversal. Astrophysical Journal, 2003, 598, L63-L66	4.7	129
112	COR1 inner coronagraph for STEREO-SECCHI 2003 ,		62
111	Constraints on Coronal Mass Ejection Dynamics from Simultaneous Radio and White-Light Observations. <i>Astrophysical Journal</i> , 2003 , 590, 533-546	4.7	84
110	Identification of Solar Sources of Major Geomagnetic Storms between 1996 and 2000. <i>Astrophysical Journal</i> , 2003 , 582, 520-533	4.7	161
109	Prominence Eruptions and Coronal Mass Ejection: A Statistical Study Using Microwave Observations. <i>Astrophysical Journal</i> , 2003 , 586, 562-578	4.7	253
108	Large solar energetic particle events of cycle 23: A global view. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	68
107	Photometry of Mercury from SOHO/LASCO and Earth The Phase Function from 2 to 170 th <i>Icarus</i> , 2002 , 155, 253-264	3.8	83
106	Sungrazing Comets Discovered with the SOHO/LASCO Coronagraphs 1996 1998. <i>Icarus</i> , 2002 , 157, 323-	3 4 .8	70
105	Interacting Coronal Mass Ejections and Solar Energetic Particles. <i>Astrophysical Journal</i> , 2002 , 572, L103-	·ц <u>1.9</u> 7	197

103	Design of the Heliospheric Imager for the STEREO mission 2001 , 4498, 63		4
102	Radio Signatures of Coronal Mass Ejection Interaction: Coronal Mass Ejection Cannibalism?. <i>Astrophysical Journal</i> , 2001 , 548, L91-L94	4.7	254
101	Erupting Solar Magnetic Flux Ropes: Theory and Observation. <i>Astrophysical Journal</i> , 2001 , 562, 1045-10	05 4 .7	73
100	A two-Type Classification of Lasco Coronal Mass Ejection. <i>Space Science Reviews</i> , 2001 , 95, 147-163	7.5	63
99	On the Temporal Relationship between Coronal Mass Ejections and Flares. <i>Astrophysical Journal</i> , 2001 , 559, 452-462	4.7	527
98	Determination of three-dimensional structure of coronal streamers and relationship to the solar magnetic field. <i>Journal of Geophysical Research</i> , 2001 , 106, 15903-15915		32
97	Predicting the 1-AU arrival times of coronal mass ejections. <i>Journal of Geophysical Research</i> , 2001 , 106, 29207-29217		310
96	Characteristics of coronal mass ejections associated with long-wavelength type II radio bursts. Journal of Geophysical Research, 2001 , 106, 29219-29229		171
95	Deriving the Electron Density of the Solar Corona from the Inversion of Total Brightness Measurements. <i>Astrophysical Journal</i> , 2001 , 548, 1081-1086	4.7	89
94	Large-Angle Spectrometric Coronagraph Measurements of the Energetics of Coronal Mass Ejections. <i>Astrophysical Journal</i> , 2000 , 534, 456-467	4.7	220
93	Sun-Earth connection coronal and heliospheric investigation (SECCHI) 2000,		21
92	Magnetic Geometry and Dynamics of the Fast Coronal Mass Ejection of 1997 September 9. <i>Astrophysical Journal</i> , 2000 , 533, 481-500	4.7	88
91	NASA Solar Terrestrial Relations Observatory (STEREO) mission heliospheric imager 2000 , 4139, 284		20
90	The dynamical nature of coronal streamers. <i>Journal of Geophysical Research</i> , 2000 , 105, 25133-25142		161
89	Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. Journal of Geophysical Research, 2000 , 105, 18169-18185		386
88	LASCO and EIT Observations of Helical Structure in Coronal Mass Ejections. <i>Astrophysical Journal</i> , 1999 , 516, 465-474	4.7	184
87	The correspondence of EUV and white light observations of coronal mass ejections with SOHO EIT and LASCO. <i>Geophysical Monograph Series</i> , 1999 , 31-46	1.1	16
86	Study of Dynamical Properties of Coronal Structures in the Polar Regions. <i>Space Science Reviews</i> , 1999 , 87, 219-222	7.5	1

85	On the origin of solar metric type II bursts. <i>Solar Physics</i> , 1999 , 187, 89-114	2.6	180
84	Combined Ulysses solar wind and SOHO coronal observations of several west limb coronal mass ejections. <i>Journal of Geophysical Research</i> , 1999 , 104, 6679-6689		20
83	Streamer disconnection events observed with the LASCO coronagraph. <i>Geophysical Research Letters</i> , 1999 , 26, 1349-1352	4.9	33
82	Coronagraph observations of inflows during high solar activity. <i>Geophysical Research Letters</i> , 1999 , 26, 1203-1206	4.9	60
81	The relationship of coronal mass ejections to streamers. <i>Journal of Geophysical Research</i> , 1999 , 104, 23	2321-22	23 3 0
80	Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. <i>Journal of Geophysical Research</i> , 1999 , 104, 24739-24767		423
79	[ITAL]SOHO[/ITAL]/EIT Observations of the 1997 April 7 Coronal Transient: Possible Evidence of Coronal Moreton Waves. <i>Astrophysical Journal</i> , 1999 , 517, L151-L154	4.7	294
78	Kinematic Measurements of Polar Jets Observed by the Large-Angle Spectrometric Coronagraph. <i>Astrophysical Journal</i> , 1999 , 523, 444-449	4.7	29
77	Comparison of Two Coronal Mass Ejections Observed by EIT and LASCO with a Model of an Erupting Magnetic Flux Rope. <i>Astrophysical Journal</i> , 1999 , 512, 484-495	4.7	109
76	Extension of the Polar Coronal Hole Boundary into Interplanetary space. <i>Astrophysical Journal</i> , 1999 , 513, 961-968	4.7	11
75	Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophysical Research Letters, 1998 , 25, 3019-3022	4.9	119
74	Type II radio emissions in the frequency range from 1¶4 MHz associated with the April 7, 1997 solar event. <i>Geophysical Research Letters</i> , 1998 , 25, 2501-2504	4.9	45
73	LASCO observations of an Earth-directed coronal mass ejection on May 12, 1997. <i>Geophysical Research Letters</i> , 1998 , 25, 2477-2480	4.9	80
72	On the relationship between coronal mass ejections and magnetic clouds. <i>Geophysical Research Letters</i> , 1998 , 25, 2485-2488	4.9	73
71	Search for Brightness Variations in FexivCoronagraph Observations of the Quiescent Solar Corona. <i>Astrophysical Journal</i> , 1998 , 505, 432-442	4.7	7
70	Origin of Streamer Material in the Outer Corona. <i>Astrophysical Journal</i> , 1998 , 498, L165-L168	4.7	207
69	Observations of Correlated White-Light and Extreme-Ultraviolet Jets from Polar Coronal Holes. <i>Astrophysical Journal</i> , 1998 , 508, 899-907	4.7	137
68	Origin and Evolution of Coronal Streamer Structure During the 1996 Minimum Activity Phase. <i>Astrophysical Journal</i> , 1997 , 485, 875-889	4.7	90

67	Measurements of Flow Speeds in the Corona Between 2 and 30R?. Astrophysical Journal, 1997, 484, 472	2- 4 .7 / 8	448
66	Association of Extreme-Ultraviolet Imaging Telescope (EIT) Polar Plumes with Mixed-Polarity Magnetic Network. <i>Astrophysical Journal</i> , 1997 , 484, L75-L78	4.7	39
65	Eit Observations of the Extreme Ultraviolet Sun. Solar Physics, 1997, 175, 571-599	2.6	277
64	Eit and LASCO Observations of the Initiation of a Coronal Mass Ejection. <i>Solar Physics</i> , 1997 , 175, 601-6	12.6	162
63	Mhd Interpretation of LASCO Observations of a Coronal Mass Ejection as a Disconnected Magnetic Structure. <i>Solar Physics</i> , 1997 , 175, 719-735	2.6	42
62	First View of the Extended Green-Line Emission Corona At Solar Activity Minimum Using the Lasco-C1 Coronagraph on Soho. <i>Solar Physics</i> , 1997 , 175, 667-684	2.6	72
61	The Relationship of Green-Line Transients to White-Light Coronal Mass Ejections. <i>Solar Physics</i> , 1997 , 175, 699-718	2.6	31
60	Lasco Observations of Disconnected Magnetic Structures Out to Beyond 28 Solar Radii During Coronal Mass Ejections. <i>Solar Physics</i> , 1997 , 175, 685-698	2.6	39
59	EIT Observations of the Extreme Ultraviolet Sun 1997 , 571-599		2
58	The Green Line Corona and Its Relation to the Photospheric Magnetic Field. <i>Astrophysical Journal</i> , 1997 , 485, 419-429	4.7	38
57	Evidence of an Erupting Magnetic Flux Rope: LASCO Coronal Mass Ejection of 1997 April 13. Astrophysical Journal, 1997 , 490, L191-L194	4.7	201
56	The Relationship of Green-Line Transients to White-Light Coronal Mass Ejections 1997 , 699-718		
55	First View of the Extended Green-Line Emission Corona at Solar Activity Minimum Using the LASCO-C1 Coronagraph on SOHO 1997 , 667-684		
54	EIT and LASCO Observations of the Initiation of a Coronal Mass Ejection 1997 , 601-612		
53	MHD Interpretation of LASCO Observations of a Coronal Mass Ejection as a Disconnected Magnetic Structure 1997 , 719-735		
52	LASCO Observations of Disconnected Magnetic Structures Out to Beyond 28 Solar Radii During Coronal Mass Ejections 1997 , 685-698		
51	STEREO: a solar terrestrial event observer mission concept 1996 ,		3
50	Enhancing the spatial resolution of solar coronagraph images using dynamic imaging 1996 , 2804, 175		

49	Enhancing the Spatial Resolution of Solar Coronagraph Observations Using Dynamic Imaging. <i>Astrophysical Journal</i> , 1996 , 471, 1058-1066	4.7	1
48	EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. <i>Solar Physics</i> , 1995 , 162, 291-312	2.6	1457
47	The Large Angle Spectroscopic Coronagraph (LASCO). Solar Physics, 1995, 162, 357-402	2.6	2016
46	The solar cycle variation of coronal mass ejections and the solar wind mass flux. <i>Journal of Geophysical Research</i> , 1994 , 99, 4201		297
45	Rotation-Averaged Rates of Coronal Mass Ejections and Dynamics of Polar Crown Filaments. <i>International Astronomical Union Colloquium</i> , 1994 , 144, 83-89		16
44	Performance of back-illuminated Tektronix CCDs in the extreme ultraviolet 1993 , 2006, 252		2
43	A CME mass distribution derived from SOLWIND coronagraph observations. <i>Solar Physics</i> , 1993 , 148, 359-370	2.6	30
42	Giant solar arches and coronal mass ejections in November 1980. <i>Solar Physics</i> , 1989 , 122, 131-143	2.6	11
41	The Extreme Ultraviolet Imaging Telescope On Board SOHO 1989 ,		3
40	Coronal Mass Ejections and Coronal Structures. <i>Astrophysics and Space Science Library</i> , 1989 , 493-596	0.3	2
39	A search for forerunner activity associated with coronal mass ejections. <i>Journal of Geophysical Research</i> , 1987 , 92, 7227		7
38	Energetic interplanetary shocks, radio emission, and coronal mass ejections. <i>Journal of Geophysical Research</i> , 1987 , 92, 9869		187
37	Large-scale structure of the sun's corona from radio observations using the Clark Lake Radioheliograph. <i>Solar Physics</i> , 1987 , 108, 113-129	2.6	20
36	Coronal mass ejection associated with the stationary post-flare arch of 2102 May 1980. <i>Solar Physics</i> , 1986 , 103, 399-408	2.6	12
35	Properties of metre-wavelength solar bursts associated with coronal mass ejections. <i>Solar Physics</i> , 1986 , 105, 149-171	2.6	17
34	The Solar Cycle Dependence of Coronal Mass Ejections. <i>Astrophysics and Space Science Library</i> , 1986 , 107-111	0.3	47
33	White-light and radio sounding observations of coronal transients. <i>Solar Physics</i> , 1985 , 98, 341-368	2.6	42
32	The frequency of long-duration solar X-ray events. <i>Solar Physics</i> , 1985 , 97, 375-379	2.6	3

31	Doppler scintillation observations of interplanetary shocks within 0.3 AU. <i>Journal of Geophysical Research</i> , 1985 , 90, 154-162		73	
30	Coronal mass ejections and interplanetary shocks. <i>Journal of Geophysical Research</i> , 1985 , 90, 163-175		312	
29	Characteristics of coronal mass ejections associated with solar frontside and backside metric type II bursts. <i>Journal of Geophysical Research</i> , 1985 , 90, 177-182		19	
28	Helios spacecraft and Earth perspective observations of three looplike solar mass ejection transients. <i>Journal of Geophysical Research</i> , 1985 , 90, 5075		35	
27	Coronal mass ejections: 1979¶981. Journal of Geophysical Research, 1985, 90, 8173		361	
26	Characteristics of flares producing metric type II bursts and coronal mass ejections. <i>Solar Physics</i> , 1984 , 93, 133-141	2.6	13	
25	Associations between coronal mass ejections and solar energetic proton events. <i>Journal of Geophysical Research</i> , 1984 , 89, 9683		209	
24	Associations between coronal mass ejections and metric type II bursts. <i>Astrophysical Journal</i> , 1984 , 279, 839	4.7	103	
23	A white-light/Fe X/HE oronal transient observation to 10 solar RadII. <i>Solar Physics</i> , 1983 , 83, 153-166	2.6	11	
22	The solar corona on 31 July, 1981. <i>Solar Physics</i> , 1983 , 83, 233-242	2.6	5	
21	The GLE-associated flare of 21 August, 1979. Solar Physics, 1983, 89, 181-193	2.6	28	
20	Associations between coronal mass ejections and soft X-ray events. <i>Astrophysical Journal</i> , 1983 , 272, 349	4.7	170	
19	Direct evidence of type III electron streams propagating in coronal streamers. <i>Astrophysical Journal</i> , 1983 , 269, L67	4.7	22	
18	Observations of a comet on collision course with the sun. <i>Science</i> , 1982 , 215, 1097-102	33.3	38	
17	A magnetic cloud and a coronal mass ejection. <i>Geophysical Research Letters</i> , 1982 , 9, 1317-1320	4.9	201	
16	Observations of coronal structure during sunspot maximum. <i>Space Science Reviews</i> , 1982 , 33, 219-231	7.5	39	
15	Simultaneous radio scattering and white light observations of a coronal transient. <i>Nature</i> , 1982 , 300, 157-159	50.4	13	
14	Corporation of two powers are sometry Nature 1002, 200, 220, 242	FO.4	26	
- - -	Coronagraphic observations of two new sungrazing comets. <i>Nature</i> , 1982 , 300, 239-242	50.4	26	

13	The observation of a coronal transient directed at earth. Astrophysical Journal, 1982, 263, L101	4.7	323
12	Observations of Coronal Structure during Sunspot Maximum 1982 , 219-231		
11	The great solar eruption of May 24, 1979. <i>Eos</i> , 1981 , 62, 153	1.5	17
10	Coronal transients near sunspot maximum. <i>Solar Physics</i> , 1981 , 69, 169-175	2.6	59
9	The equatorial latitude of auroral activity during 1972 1977. Solar Physics, 1980, 67, 189-206	2.6	3
8	The Solar Mass Ejection of 8 May 1979 1980 , 387-391		10
7	Satellite Observations of the Outer Corona Near Sunspot Maximum 1980, 439-442		27
6	Initial observations with the SOLWIND coronagraph. <i>Astrophysical Journal</i> , 1980 , 237, L99	4.7	79
5	The observation of a high-latitude coronal transient. Astrophysical Journal, 1980, 238, L161	4.7	15
4	Observations of coronal disturbances from 1 to 9 R?. <i>Solar Physics</i> , 1974 , 36, 219-231	2.6	64
3	Observation of sectored structure in the outer solar corona: Correlation with interplanetary magnetic field. <i>Solar Physics</i> , 1974 , 37, 469-475	2.6	51
2	Fine structure and perturbation analysis of the a3II state of CO. <i>Journal of Molecular Spectroscopy</i> , 1972 , 44, 347-382	1.3	115
1	Effects of the Langer Transformation on the Calculation of Internuclear Potential Curves. <i>Journal of Chemical Physics</i> , 1971 , 54, 4252-4255	3.9	8