Alberto Cano

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1929578/alberto-cano-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

70 1,343 21 34 g-index

72 1,739 4.2 5.63 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
70	Adaptive ensemble of self-adjusting nearest neighbor subspaces for multi-label drifting data streams. <i>Neurocomputing</i> , 2022 , 481, 228-248	5.4	O
69	Time Series Segmentation Based on Stationarity Analysis to Improve New Samples Prediction. <i>Sensors</i> , 2021 , 21,	3.8	4
68	Self-adjusting k nearest neighbors for continual learning from multi-label drifting data streams. <i>Neurocomputing</i> , 2021 , 442, 10-25	5.4	3
67	A Two-Phase Anomaly Detection Model for Secure Intelligent Transportation Ride-Hailing Trajectories. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 22, 4496-4506	6.1	15
66	Locally Linear Support Vector Machines for Imbalanced Data Classification. <i>Lecture Notes in Computer Science</i> , 2021 , 616-628	0.9	
65	Hybrid Group Anomaly Detection for Sequence Data: Application to Trajectory Data Analytics. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-12	6.1	4
64	PSIONplus Server for Accurate Multi-Label Prediction of Ion Channels and Their Types. <i>Biomolecules</i> , 2020 , 10,	5.9	3
63	Exploring Pattern Mining Algorithms for Hashtag Retrieval Problem. <i>IEEE Access</i> , 2020 , 8, 10569-10583	3.5	18
62	A Data-Driven Approach for Twitter Hashtag Recommendation. <i>IEEE Access</i> , 2020 , 8, 79182-79191	3.5	15
61	A general-purpose distributed pattern mining system. <i>Applied Intelligence</i> , 2020 , 50, 2647-2662	4.9	10
60	Distributed Selection of Continuous Features in Multilabel Classification Using Mutual Information. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 2280-2293	10.3	9
59	Trajectory Outlier Detection. ACM Transactions on Management Information Systems, 2020, 11, 1-29	2	17
58	When the Decomposition Meets the Constraint Satisfaction Problem. <i>IEEE Access</i> , 2020 , 8, 207034-2070)4 ₃ 3 ,	O
57	Blocking Self-Avoiding Walks Stops Cyber-Epidemics: A Scalable GPU-Based Approach. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2020 , 32, 1263-1275	4.2	8
56	Kappa Updated Ensemble for drifting data stream mining. <i>Machine Learning</i> , 2020 , 109, 175-218	4	50
55	Distributed multi-label feature selection using individual mutual information measures. Knowledge-Based Systems, 2020 , 188, 105052	7.3	39
54	Adapted K-Nearest Neighbors for Detecting Anomalies on Spatiollemporal Traffic Flow. <i>IEEE Access</i> , 2019 , 7, 10015-10027	3.5	51

(2018-2019)

53	ARFF Data Source Library for Distributed Single/Multiple Instance, Single/Multiple Output Learning on Apache Spark. <i>Lecture Notes in Computer Science</i> , 2019 , 173-179	0.9		
52	Speeding up k-Nearest Neighbors classifier for large-scale multi-label learning on GPUs. <i>Neurocomputing</i> , 2019 , 354, 10-19	5.4	15	
51	Interpretable Multiview Early Warning System Adapted to Underrepresented Student Populations. <i>IEEE Transactions on Learning Technologies</i> , 2019 , 12, 198-211	4	21	
50	Exploiting GPU and cluster parallelism in single scan frequent itemset mining. <i>Information Sciences</i> , 2019 , 496, 363-377	7.7	27	
49	Multi-Label Punitive kNN with Self-Adjusting Memory for Drifting Data Streams. <i>ACM Transactions on Knowledge Discovery From Data</i> , 2019 , 13, 1-31	4	12	
48	Adaptive Ensemble Active Learning for Drifting Data Stream Mining 2019,		4	
47	Active Learning with Abstaining Classifiers for Imbalanced Drifting Data Streams 2019,		4	
46	. IEEE Access, 2019 , 7, 12192-12205	3.5	51	
45	Evolving rule-based classifiers with genetic programming on GPUs for drifting data streams. <i>Pattern Recognition</i> , 2019 , 87, 248-268	7.7	24	
44	Parallelization strategies for markerless human motion capture. <i>Journal of Real-Time Image Processing</i> , 2018 , 14, 453-467	1.9	4	
43	OLLAWV: OnLine Learning Algorithm using Worst-Violators. <i>Applied Soft Computing Journal</i> , 2018 , 66, 384-393	7.5	16	
42	MIRSVM: Multi-instance support vector machine with bag representatives. <i>Pattern Recognition</i> , 2018 , 79, 228-241	7:7	19	
41	Online ensemble learning with abstaining classifiers for drifting and noisy data streams. <i>Applied Soft Computing Journal</i> , 2018 , 68, 677-692	7.5	50	
40	Distributed nearest neighbor classification for large-scale multi-label data on spark. <i>Future Generation Computer Systems</i> , 2018 , 87, 66-82	7.5	26	
39	A locally weighted learning method based on a data gravitation model for multi-target regression. <i>International Journal of Computational Intelligence Systems</i> , 2018 , 11, 282	3.4	10	
38	A survey on graphic processing unit computing for large-scale data mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018 , 8, e1232	6.9	32	
37	Selecting local ensembles for multi-class imbalanced data classification 2018,		3	
36	Learning Classification Rules with Differential Evolution for High-Speed Data Stream Mining on GPU s 2018 ,		2	

35	Multi-objective genetic programming for feature extraction and data visualization. <i>Soft Computing</i> , 2017 , 21, 2069-2089	3.5	27
34	Sentiment Classification from Multi-class Imbalanced Twitter Data Using Binarization. <i>Lecture Notes in Computer Science</i> , 2017 , 26-37	0.9	17
33	Extremely high-dimensional optimization with MapReduce: Scaling functions and algorithm. <i>Information Sciences</i> , 2017 , 415-416, 110-127	7.7	17
32	An ensemble approach to multi-view multi-instance learning. <i>Knowledge-Based Systems</i> , 2017 , 136, 46-5	7 .3	22
31	Multi-target support vector regression via correlation regressor chains. <i>Information Sciences</i> , 2017 , 415-416, 53-69	7.7	72
30	A hybrid dynamic programming for solving a mixed-model sequencing problem with production mix restriction and free interruptions. <i>Progress in Artificial Intelligence</i> , 2017 , 6, 27-39	4	7
29	Large-Scale Multi-label Ensemble Learning on Spark 2017 ,		5
28	A Data Structure to Speed-Up Machine Learning Algorithms on Massive Datasets. <i>Lecture Notes in Computer Science</i> , 2016 , 365-376	0.9	7
27	Discovering useful patterns from multiple instance data. <i>Information Sciences</i> , 2016 , 357, 23-38	7.7	11
26	ur-CAIM: improved CAIM discretization for unbalanced and balanced data. <i>Soft Computing</i> , 2016 , 20, 173-188	3.5	34
25	LAIM discretization for multi-label data. <i>Information Sciences</i> , 2016 , 330, 370-384	7.7	28
24	Speeding-Up Association Rule Mining With Inverted Index Compression. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 3059-3072	10.2	26
23	100 Million dimensions large-scale global optimization using distributed GPU computing 2016 ,		7
22	Early dropout prediction using data mining: a case study with high school students. <i>Expert Systems</i> , 2016 , 33, 107-124	2.1	128
21	Speeding up multiple instance learning classification rules on GPUs. <i>Knowledge and Information Systems</i> , 2015 , 44, 127-145	2.4	19
20	Genetic Programming for Mining Association Rules in Relational Database Environments 2015 , 431-450		3
19	Synthesis of In-Place Iterative Sorting Algorithms Using GP: A Comparison Between STGP, SFGP, G3P and GE. <i>Lecture Notes in Computer Science</i> , 2015 , 305-310	0.9	0
18	Parallel evaluation of Pittsburgh rule-based classifiers on GPUs. <i>Neurocomputing</i> , 2014 , 126, 45-57	5.4	12

LIST OF PUBLICATIONS

17	Scalable CAIM discretization on multiple GPUs using concurrent kernels. <i>Journal of Supercomputing</i> , 2014 , 69, 273-292	2.5	7
16	GPU-parallel subtree interpreter for genetic programming 2014 ,		9
15	Classification Rule Mining with Iterated Greedy. Lecture Notes in Computer Science, 2014, 585-596	0.9	3
14	An interpretable classification rule mining algorithm. <i>Information Sciences</i> , 2013 , 240, 1-20	7.7	39
13	Parallel multi-objective Ant Programming for classification using GPUs. <i>Journal of Parallel and Distributed Computing</i> , 2013 , 73, 713-728	4.4	17
12	Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data. <i>Applied Intelligence</i> , 2013 , 38, 315-330	4.9	100
11	Weighted data gravitation classification for standard and imbalanced data. <i>IEEE Transactions on Cybernetics</i> , 2013 , 43, 1672-87	10.2	69
10	High performance evaluation of evolutionary-mined association rules on GPUs. <i>Journal of Supercomputing</i> , 2013 , 66, 1438-1461	2.5	40
9	A Grammar-Guided Genetic Programming Algorithm for Multi-Label Classification. <i>Lecture Notes in Computer Science</i> , 2013 , 217-228	0.9	2
8	Speeding up the evaluation phase of GP classification algorithms on GPUs. <i>Soft Computing</i> , 2012 , 16, 187-202	3.5	31
7	Binary and multiclass imbalanced classification using multi-objective ant programming 2012,		1
6	An EP algorithm for learning highly interpretable classifiers 2011 ,		5
5	A Parallel Genetic Programming Algorithm for Classification. <i>Lecture Notes in Computer Science</i> , 2011 , 172-181	0.9	4
4	Solving Classification Problems Using Genetic Programming Algorithms on GPUs. <i>Lecture Notes in Computer Science</i> , 2010 , 17-26	0.9	4
3	Analysis and forecasting of rivers pH level using deep learning. Progress in Artificial Intelligence,1	4	1
2	An ontology matching approach for semantic modeling: A case study in smart cities. <i>Computational Intelligence</i> ,	2.5	2
1	ROSE: robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams. <i>Machine Learning</i> ,1	4	О