Bernard Wenger

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1929292/bernard-wenger-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

51	5,169	30	53
papers	citations	h-index	g-index
53	6,022 ext. citations	16.6	5.68
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
51	Utilizing Nonpolar Organic Solvents for the Deposition of Metal-Halide Perovskite Films and the Realization of Organic Semiconductor/Perovskite Composite Photovoltaics <i>ACS Energy Letters</i> , 2022 , 7, 1246-1254	20.1	1
50	Highly Absorbing Lead-Free Semiconductor CuAgBil for Photovoltaic Applications from the Quaternary Cul-Agl-Bil Phase Space. <i>Journal of the American Chemical Society</i> , 2021 , 143, 3983-3992	16.4	16
49	Dimethylammonium: An A-Site Cation for Modifying CsPbI 3. Solar Rrl, 2021, 5, 2000599	7.1	10
48	Crystallographic, Optical, and Electronic Properties of the Cs2AgBi1\(\mathbb{B}\)InxBr6 Double Perovskite: Understanding the Fundamental Photovoltaic Efficiency Challenges. ACS Energy Letters, 2021, 6, 1073-	1681 ¹	10
47	Revealing Factors Influencing the Operational Stability of Perovskite Light-Emitting Diodes. <i>ACS Nano</i> , 2020 , 14, 8855-8865	16.7	25
46	A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. <i>Science</i> , 2020 , 369, 96-102	33.3	231
45	Metal composition influences optoelectronic quality in mixed-metal leadlin triiodide perovskite solar absorbers. <i>Energy and Environmental Science</i> , 2020 , 13, 1776-1787	35.4	50
44	Revealing the Stoichiometric Tolerance of Lead Trihalide Perovskite Thin Films. <i>Chemistry of Materials</i> , 2020 , 32, 114-120	9.6	4
43	Elucidating the Role of a Tetrafluoroborate-Based Ionic Liquid at the n-Type Oxide/Perovskite Interface. <i>Advanced Energy Materials</i> , 2020 , 10, 1903231	21.8	50
42	A Phosphine Oxide Route to Formamidinium Lead Tribromide Nanoparticles. <i>Chemistry of Materials</i> , 2020 , 32, 7172-7180	9.6	6
41	Charge-Carrier Trapping Dynamics in Bismuth-Doped Thin Films of MAPbBr Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3681-3688	6.4	27
40	Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. <i>Energy and Environmental Science</i> , 2019 , 12, 169-176	35.4	76
39	Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. <i>Energy and Environmental Science</i> , 2019 , 12, 3063-3073	35.4	77
38	Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites. <i>ACS Energy Letters</i> , 2019 , 4, 2301-2307	20.1	35
37	Overcoming Zinc Oxide Interface Instability with a Methylammonium-Free Perovskite for High-Performance Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1900466	15.6	85
36	Oxidative Passivation of Metal Halide Perovskites. <i>Joule</i> , 2019 , 3, 2716-2731	27.8	51
35	Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25511-25520	13	19

34	Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite. ACS Energy Letters, 2019, 4, 299-30	0520.1	78
33	Facile Synthesis of Stable and Highly Luminescent Methylammonium Lead Halide Nanocrystals for Efficient Light Emitting Devices. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1269-1279	16.4	83
32	Impact of Bi Heterovalent Doping in Organic-Inorganic Metal Halide Perovskite Crystals. <i>Journal of the American Chemical Society</i> , 2018 , 140, 574-577	16.4	135
31	Highly Crystalline Methylammonium Lead Tribromide Perovskite Films for Efficient Photovoltaic Devices. <i>ACS Energy Letters</i> , 2018 , 3, 1233-1240	20.1	43
30	Cubic or Orthorhombic? Revealing the Crystal Structure of Metastable Black-Phase CsPbI3 by Theory and Experiment. <i>ACS Energy Letters</i> , 2018 , 3, 1787-1794	20.1	292
29	High irradiance performance of metal halide perovskites for concentrator photovoltaics. <i>Nature Energy</i> , 2018 , 3, 855-861	62.3	140
28	Atomic Layer Deposited Electron Transport Layers in Efficient Organometallic Halide Perovskite Devices. <i>MRS Advances</i> , 2018 , 3, 3075-3084	0.7	6
27	CsInAgCl: A New Lead-Free Halide Double Perovskite with Direct Band Gap. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 772-778	6.4	494
26	Dopant-Free Planar ntp Perovskite Solar Cells with Steady-State Efficiencies Exceeding 18%. <i>ACS Energy Letters</i> , 2017 , 2, 622-628	20.1	58
25	Transparent and Robust Silica Coatings with Dual Range Porosity for Enzyme-Based Optical Biosensing. <i>Advanced Functional Materials</i> , 2017 , 27, 1606385	15.6	4
24	Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1192-1200	13	123
23	Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics. <i>Joule</i> , 2017 , 1, 328-343	27.8	104
22	Consolidation of the optoelectronic properties of CHNHPbBr perovskite single crystals. <i>Nature Communications</i> , 2017 , 8, 590	17.4	164
21	A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. <i>Energy and Environmental Science</i> , 2017 , 10, 145-152	35.4	253
20	Mechanism for rapid growth of organic-inorganic halide perovskite crystals. <i>Nature Communications</i> , 2016 , 7, 13303	17.4	150
19	Structured Organic-Inorganic Perovskite toward a Distributed Feedback Laser. <i>Advanced Materials</i> , 2016 , 28, 923-9	24	209
18	Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1254-9	6.4	567
17	Controlling mesopore size and processability of transparent enzyme-loaded silica films for biosensing applications. <i>ACS Applied Materials & mp; Interfaces</i> , 2015 , 7, 2960-71	9.5	11

16	Au-labeled antibodies to enhance the sensitivity of a refractometric immunoassay: detection of cocaine. <i>Biosensors and Bioelectronics</i> , 2012 , 34, 94-9	11.8	8
15	Smart Textiles with Biosensing Capabilities. <i>Advances in Science and Technology</i> , 2012 , 80, 129-135	0.1	17
14	Mechanically tunable conjugated polymer distributed feedback lasers. <i>Applied Physics Letters</i> , 2010 , 97, 193303	3.4	80
13	Inexpensive and fast wafer-scale fabrication of nanohole arrays in thin gold films for plasmonics. <i>Nanotechnology</i> , 2010 , 21, 205301	3.4	21
12	Integrated optical biosensor for in-line monitoring of cell cultures. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 1478-85	11.8	6
11	Optically-Pumped Lasing in Hybrid OrganicIhorganic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2009 , 19, 2130-2136	15.6	50
10	Monitoring of cellular immune responses with an optical biosensor: a new tool to assess nanoparticle toxicity. <i>Procedia Chemistry</i> , 2009 , 1, 738-741		4
9	Nanostructured waveguides for evanescent wave biosensors. <i>Applied Surface Science</i> , 2009 , 256, S12-S ²	1 <i>7</i> 6.7	12
8	Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer. <i>Journal of Applied Physics</i> , 2008 , 104, 033107	2.5	27
7	High Efficiency Composite Metal Oxide-Polymer Electroluminescent Devices: A Morphological and Material Based Investigation. <i>Advanced Materials</i> , 2008 , 20, 3447-3452	24	129
6	Dynamics of Photoinduced Interfacial Electron Transfer and Charge Transport in Dye-Sensitized Mesoscopic Semiconductors. <i>Chimia</i> , 2007 , 61, 631-634	1.3	33
5	High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2006 , 128, 4146-54	16.4	512
4	Electron donor-acceptor distance dependence of the dynamics of light-induced interfacial charge transfer in the dye-sensitization of nanocrystalline oxide semiconductors 2006 ,		3
3	Origin of the Kinetic Heterogeneity of Ultrafast Light-Induced Electron Transfer from Ru(II)-Complex Dyes to Nanocrystalline Semiconducting Particles. <i>Chimia</i> , 2005 , 59, 123-125	1.3	15
2	Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12150-1	16.4	201
1	Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6850-6	16.4	358